Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836371

RESUMO

Cu3SbSe4 is a potential p-type thermoelectric material, distinguished by its earth-abundant, inexpensive, innocuous, and environmentally friendly components. Nonetheless, the thermoelectric performance is poor and remains subpar. Herein, the electrical and thermal transport properties of Cu3SbSe4 were synergistically optimized by S alloying. Firstly, S alloying widened the band gap, effectively alleviating the bipolar effect. Additionally, the substitution of S in the lattice significantly increased the carrier effective mass, leading to a large Seebeck coefficient of ~730 µVK-1. Moreover, S alloying yielded point defect and Umklapp scattering to significantly depress the lattice thermal conductivity, and thus brought about an ultralow κlat ~0.50 Wm-1K-1 at 673 K in the solid solution. Consequently, multiple effects induced by S alloying enhanced the thermoelectric performance of the Cu3SbSe4-Cu3SbS4 solid solution, resulting in a maximum ZT value of ~0.72 at 673 K for the Cu3SbSe2.8S1.2 sample, which was ~44% higher than that of pristine Cu3SbSe4. This work offers direction on improving the comprehensive TE in solid solutions via elemental alloying.

2.
Adv Sci (Weinh) ; 10(23): e2302236, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37282775

RESUMO

All-inorganic metal halide perovskite CsPbBr3 crystal is regarded as an attractive alternative to high purity Ge and CdZnTe for room temperature γ-ray detection. However, high γ-ray resolution is only observable in small CsPbBr3 crystal; more practical and deployable large crystal exhibits very low, and even no detection efficiency, thereby thwarting prospects for cost-effective room temperature γ-ray detection. The poor performance of large crystal is attributed to the unexpected secondary phase inclusion during crystal growth, which traps the generated carriers. Here, the solid-liquid interface during crystal growth is engineered by optimizing the temperature gradient and growth velocity. This minimizes the unfavorable formation of the secondary phase, leading to industrial-grade crystals with a diameter of 30 mm. This excellent-quality crystal exhibits remarkably high carrier mobility of 35.4 cm2 V-1 s-1 and resolves the peak of 137 Cs@ 662 keV γ-ray at an energy resolution of 9.91%. These values are the highest among previously reported large crystals.

3.
Small ; 19(15): e2206865, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634977

RESUMO

Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1- x Agx GaTe2 (0 ≤ x ≤ 0.5) solid solutions through high-ratio alloying and vibratory ball milling, to achieve ultra-low thermal conductivity and record-breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m-1  K-1 at 300 K and 0.40 W m-1  K-1 at 873 K for the Cu0.5 Ag0.5 GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low-temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7 Ag0.3 GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300-873 K, which are the highest values of CuGaTe2 -based thermoelectric materials.

4.
Adv Sci (Weinh) ; 9(35): e2203782, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285809

RESUMO

Realizing high average thermoelectric figure of merit (ZTave ) and power factor (PFave ) has been the utmost task in thermoelectrics. Here the new strategy to independently improve constituent factors in ZT is reported, giving exceptionally high ZTave and PFave in n-type PbSe. The nonstoichiometric, alloyed composition and resulting defect structures in new Pb1+ x Se0.8 Te0.2 (x = 0-0.125) system is key to this achievement. First, incorporating excess Pb unusually increases carrier mobility (µH ) and concentration (nH ) simultaneously in contrast to the general physics rule, thereby raising electrical conductivity (σ). Second, modifying charge scattering mechanism by the authors' synthesis process boosts a magnitude of Seebeck coefficient (S) above theoretical expectations. Detouring the innate inverse proportionality between nH and µH ; and σ and S enables independent control over them and change the typical trend of PF to temperature, giving remarkably high PFave ≈20 µW cm-1 K-2 from 300 to 823 K. The dual incorporation of Te and excess Pb generates unusual antisite Pb at the anionic site and displaced Pb from the ideal position, consequently suppressing lattice thermal conductivity. The best composition exhibits a ZTave of ≈1.2 from 400 to 823 K, one of the highest reported for all n-type PbQ (Q = chalcogens) materials.

5.
J Am Chem Soc ; 143(49): 20725-20734, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783563

RESUMO

Extraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology. Herein, we report a new strategy of designing and realizing bulk metamaterials with finely tunable hyperbolic responses. We develop a facile two-step process: (1) self-assembly to obtain heterostructured nanohybrids of building blocks and (2) consolidation to convert nanohybrid powders to dense bulk pellets. Our samples have centimeter-scale dimensions typically, readily further scalable. Importantly, the thickness of building blocks and their relative concentration in bulk materials serve as a delicate means of controlling hyperbolic responses. The resulting new bulk heterostructured material system consists of the alternating h-BN and graphite/graphene nanolayers and exhibits significant modulation in both type-I and type-II hyperbolic resonance modes. It is the first example of real bulk hyperbolic metamaterials, consequently displaying the capability of tuning their responses along both in-plane and out-of-plane directions of the materials for the first time. It also distinctly interacts with unpolarized and polarized transverse magnetic and electronic beams to give unique hyperbolic responses. Our achievement can be a new platform to create various bulk metamaterials without complicated nanofabrication techniques. Our facile synthesis method using common laboratory techniques can open doors to broad-range researchers for active interdisciplinary studies for this otherwise hardly accessible technology.

6.
Nat Mater ; 20(10): 1378-1384, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34341524

RESUMO

Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.

7.
J Am Chem Soc ; 142(35): 15172-15186, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786777

RESUMO

Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system CuxPbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400-773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 µW cm-1 K-2 from 400 to 773 K with a maximum of ∼30 µW cm-1 K-2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 µW cm-1 K-2 at 773 K is even higher than ∼21 µW cm-1 K-2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm-1 K-1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.

8.
Nanoscale ; 11(37): 17340-17349, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517377

RESUMO

The performance of thermoelectric (TE) materials is strongly influenced by multi-scale defects. Some defects can improve the TE performance but some are unfavorable. Therefore, the multi-scale defects need to be integrated rationally to enhance the TE properties. Here, the defects including atomic-scale point defects, high-density grain boundaries and nano-precipitates were integrated into CuFeS2, an n-type and Earth-abundant TE material. Primitively, a Cd dopant with high scattering factor was introduced to form point defects in Cu1-xCdxFeS2 (x = 0-0.1) according to the calculated scattering parameters. Furthermore, the processes of quenching, annealing, high-energy ball milling (QAH) and sintering were carried out to integrate the multi-scale defects into Cu1-xCdxFeS2. The results suggested that point defects and antisite defects were achieved and the unfavorable Cd'Fe defects were suppressed effectively, leading to a higher electrical conductivity. Moreover, the CdS nano-precipitates played a vital role in carrier filtering to increase the Seebeck coefficient. Meanwhile, the high-density grain boundaries suppressed the lattice thermal conductivity. As a result, a peak ZT value of 0.39 at 723 K was obtained in Cu0.92Cd0.08FeS2, which is the highest value reported so far in the CuFeS2 family.

9.
Nanoscale ; 10(31): 14830-14834, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30047968

RESUMO

Highly robust and flexible n-type thermoelectric (TE) films based on Ag2Te nanoshuttle/polyvinylidene fluoride were prepared by a solution-processable method without a surfactant. A good power performance of over 30 µW (m K2)-1 at room temperature was achieved. Moreover, the synthesized fabrics also exhibited potential for application in flexible electronic devices with negligible performance change after 1000 bending cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...