Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727391

RESUMO

Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.

2.
Chem Commun (Camb) ; 60(33): 4463-4466, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563776

RESUMO

Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Ácidos Ftálicos , Humanos , Campos Magnéticos
3.
Small ; 18(8): e2103174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34914183

RESUMO

Plasmonic nanohybrids are promising photo energy conversion materials in photoelectronics and biomedicine, due to their unique surface plasmon resonance (SPR). Au and Cu2-x Sx nanostructures with strong SPR in the near-infrared (NIR) spectral region are classic plasmonic systems used to convert NIR photons into heat for photothermal therapy (PTT). The rational design of the Au/Cu2-x Sx nanohybrids is expected to induce better photothermal conversion; however, the construction of such hybrids via wet-chemistry methods with a well-controlled interfacial structure is still challenging. Here, the synthesis of an AuCu Star/Cu2-x Sx nanohybrid is reported, where the Cu2-x Sx components are selectively grown on the AuCu nanostar tips to form "caps". The spatial formation of the Cu2-x Sx caps on star tips is mainly governed by surfactant concentration, tip curvature, and experimental manipulation. The nanohybrids show low cytotoxicity and superior photothermal conversion efficiency, enabling robust PTT to kill cancer cells in the second NIR window. Numerical simulation reveals that the coupling of Cu2-x Sx on nanostar tips generates strong interfacial electric field, improving photothermal conversion. Moreover, the spatial separation structure favors the continuous flow of hot charge carriers to produce active radicals, further promoting the tumor treatment effect.


Assuntos
Neoplasias , Nanomedicina Teranóstica , Ouro/química , Humanos , Neoplasias/terapia , Fototerapia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA