Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556236

RESUMO

Gut microbial ß-glucuronidases (gmß-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmß-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmß-GUS enzymes. Subsequently, the anti-gmß-GUS activities of the major constituents in RCE were tested and the results showed that 1,2,3,4,6-penta-O-galloyl-ß-d-glucopyranose (PGG) acted as a strong and broad-spectrum inhibitor on multiple gmß-GUS (including EcGUS, CpGUS, SaGUS, and EeGUS). Inhibition kinetic assays demonstrated that PGG effectively inhibited four gmß-GUS in a non-competitive manner, with the Ki values ranging from 0.12 µM to 1.29 µM. Docking simulations showed that PGG could tightly bound to the non-catalytic sites of various gmß-GUS, mainly via hydrogen bonding and aromatic interactions. It was also found that PGG could strongly inhibit the total gmß-GUS activity in mice feces, with the IC50 value of 1.24 µM. Collectively, our findings revealed that RCE and its constituent PGG could strongly inhibit multiple gmß-GUS enzymes, suggesting that RCE and PGG could be used for alleviating gmß-GUS associated enterotoxicity.


Assuntos
Inibidores Enzimáticos , Microbioma Gastrointestinal , Simulação de Acoplamento Molecular , Rhodiola , Rhodiola/química , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicina Tradicional Tibetana , Cinética , Masculino
2.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Assuntos
Ácidos Aristolóquicos , Doenças Mitocondriais , Humanos , Ácidos Aristolóquicos/toxicidade , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucuronosiltransferase/metabolismo , Cinética , Catálise , Difosfato de Uridina/metabolismo
3.
J Med Virol ; 95(11): e29208, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37947293

RESUMO

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , SARS-CoV-2 , Ensaios de Triagem em Larga Escala , Quercetina/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Antivirais/química , Ácido Gálico/farmacologia , Simulação de Acoplamento Molecular
4.
Heliyon ; 9(8): e19150, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654459

RESUMO

BACKGROUND: Normothermic machine perfusion (NMP) could provide protection to organs from donation after circulatory death (DCD) before transplantation, and its molecular mechanism remains unclear. Our previous study discovered that the air-ventilated NMP confers a better DCD liver recovery than oxygen-ventilated NMP. The purpose in the current study was to investigate the protective mechanism of air-ventilated NMP in a rat model of DCD liver by metabolomics, and to select biomarker to predict liver function recovery. MATERIALS AND METHODS: Peroxisome proliferator activator receptor-α (PPARα) agonist or antagonist was administered via the perfusion circuit in the air-ventilated NMP. Perfusate samples were taken for measurements of aminotransferases using standard biochemical methods, tumor necrosis factor-alpha and interleukin-6. Liver biopsies were allocated for detection of metabolomics, PPARα and cytochrome P450 1A2 (CYP1A2). RESULTS: Metabolomics analysis revealed the significant increased γ-linolenic acid and decreased adrenic acid during the air-ventilated NMP, indicating linoleic acid metabolism pathway was associated with a better DCD liver recovery; as a major enzyme involved in linolenic acid metabolism, CYP1A2 was found correlated with a less inflammation and better liver function with the air-ventilated NMP; PPARα agonist could increase CYP1A2 expression and activity, decrease inflammation response, and improve liver function with the air-ventilated NMP, while PPARα antagonist played the opposite. CONCLUSION: Air-ventilated NMP confers a better liver recovery from DCD rats through the activated linoleic acid metabolism and CYP1A2 upregulation; CYP1A2 expression and activity might function as biomarker to predict DCD liver function recovery with NMP.

5.
Fitoterapia ; 171: 105669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683877

RESUMO

Obesity has been recognized as a key risk factor for multiple metabolic disorders, including diabetes, cardiovascular diseases and many types of cancer. Herbal medicines have been frequently used for preventing and treating obesity in many countries, but in most cases, the key anti-obesity constituents in herbs and their anti-obesity mechanisms are poorly understood. This study demonstrated a case study for uncovering the anti-obesity constituents in an anti-obesity herbal medicine (Ginkgo biloba extract) and deciphering their synergistic effects via targeting human pancreatic lipase (hPL). Following screening the anti-hPL effects of eighty herbal medicines, Ginkgo biloba extract (GBE50) was found with the most potent anti-hPL activity. Global chemical profiling of herbal constituents coupling with hPL inhibition assay revealed that the bioflavonoids and several flavonoids in GBE50 were key anti-hPL constituents. Among all tested thirty-eight constituents, sciadopitysin, bilobetin, quercetin, isoginkgetin, and ginkgetin showed potent anti-hPL effects (IC50 values <2.5 µM). Inhibition kinetic analyses suggested that sciadopitysin, bilobetin, quercetin, isoginkgetin, and ginkgetin acted as non-competitive inhibitors of hPL, with the Ki values were <2 µM. Docking simulations revealed that four bioflavonoids (sciadopitysin, bilobetin, isoginkgetin, and ginkgetin) could tightly bind on hPL at cavity 2, which it is different from the binding cavity of quercetin on hPL. Further investigations demonstrated that the combinations of quercetin and one bioflavonoid-type hPL inhibitor (sciadopitysin or bilobetin) showed synergistic anti-hPL effects, suggesting that the multi-components in GBE50 may generate more potent anti-hPL effect. Collectively, our findings uncovered the anti-obesity constituents in GBE50, and explored their anti-hPL mechanisms as well as synergistic effects at molecular levels, which will be very helpful for further understanding the anti-obesity mechanisms of Ginkgo biloba.


Assuntos
Flavonas , Plantas Medicinais , Humanos , Quercetina/farmacologia , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ginkgo biloba/química , Flavonoides/farmacologia , Flavonoides/química , Obesidade/tratamento farmacológico
6.
Drug Metab Dispos ; 51(11): 1490-1498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37550069

RESUMO

Fenofibrate, a marketed peroxisome proliferator-activated receptor-α (PPARα) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR-mediated biologic activities. Our results demonstrated that fenofibrate could be rapidly hydrolyzed in the preparations from both human liver and lung to release fenofibric acid. Reaction phenotyping assays coupling with chemical inhibition assays showed that human carboxylesterase 1A (hCES1A) played a predominant role in fenofibrate hydrolysis in human liver and lung, while human carboxylesterase 2A (hCES2A) and human monoacylglycerol esterase (hMAGL) contributed to a very lesser extent. Kinetic analyses showed that fenofibrate could be rapidly hydrolyzed by hCES1A in human liver preparations, while the inherent clearance of hCES1A-catalyzed fenofibrate hydrolysis is much higher (>200-fold) than than that of hCES2A or hMAGL. Biologic assays demonstrated that both fenofibrate and fenofibric acid showed very closed Nrf2 agonist effects, but fenofibrate hydrolysis strongly weakens its inhibitory effects against both hCES2A and hNtoum. Collectively, our findings reveal that the liver is the major organ and hCES1A is the predominant enzyme-catalyzing fenofibrate hydrolysis in humans, while fenofibrate hydrolysis significantly reduces inhibitory effects of fenofibrate against serine hydrolases. SIGNIFICANCE STATEMENT: Fenofibrate can be completely converted to fenofibric acid in humans and subsequently exert its pharmacological effects, but the hydrolytic pathways of fenofibrate in humans have not been well-investigated. This study reported that the liver was the predominant organ and human carboxylesterase 1A was the crucial enzyme involved in fenofibrate hydrolysis in humans.

7.
Heliyon ; 9(7): e17908, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483732

RESUMO

Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3',4'-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF via inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.

8.
Am J Chin Med ; 51(5): 1153-1188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403214

RESUMO

COVID-19 has posed unprecedented challenges to global public health since its outbreak. The Qing-Fei-Pai-Du decoction (QFPDD), a Chinese herbal formula, is widely used in China to treat COVID-19. It exerts an impressive therapeutic effect by inhibiting the progression from mild to critical disease in the clinic. However, the underlying mechanisms remain obscure. Both SARS-CoV-2 and influenza viruses elicit similar pathological processes. Their severe manifestations, such as acute respiratory distress syndrome (ARDS), multiple organ failure (MOF), and viral sepsis, are correlated with the cytokine storm. During flu infection, QFPDD reduced the lung indexes and downregulated the expressions of MCP-1, TNF-[Formula: see text], IL-6, and IL-1[Formula: see text] in broncho-alveolar lavage fluid (BALF), lungs, or serum samples. The infiltration of neutrophils and inflammatory monocytes in lungs was decreased dramatically, and lung injury was ameliorated in QFPDD-treated flu mice. In addition, QFPDD also inhibited the polarization of M1 macrophages and downregulated the expressions of IL-6, TNF-[Formula: see text], MIP-2, MCP-1, and IP-10, while also upregulating the IL-10 expression. The phosphorylated TAK1, IKK[Formula: see text]/[Formula: see text], and I[Formula: see text]B[Formula: see text] and the subsequent translocation of phosphorylated p65 into the nuclei were decreased by QFPDD. These findings indicated that QFPDD reduces the intensity of the cytokine storm by inhibiting the NF-[Formula: see text]B signaling pathway during severe viral infections, thereby providing theoretical and experimental support for its clinical application in respiratory viral infections.


Assuntos
COVID-19 , Interleucina-6 , Animais , Camundongos , Interleucina-6/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Neutrófilos/metabolismo , Síndrome da Liberação de Citocina , Macrófagos/metabolismo , NF-kappa B/metabolismo
9.
J Nat Prod ; 86(7): 1824-1831, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337963

RESUMO

A set of 22 analogs of licochalcone A was designed and synthesized to explore their potentials as dipeptidyl peptidase 4 (DPP4) inhibitors with anti-inflammatory effects. The anti-DPP4 effects of these analogs were evaluated using the fluorescent substrate Gly-Pro-N-butyl-4-amino-1,8-naphthalimide (GP-BAN). The nitro-substituted analogue 27 exhibited the most potent activity (Ki = 0.96 µM). A structure-activity relationship investigation revealed that 4-hydroxyl and 5-chloro substituents are essential for DPP4 inhibition, while the 3'-nitro substituent improved both DPP4 inhibition and microsomal stability. Furthermore, compound 27 demonstrated good selectivity for DPP4 over other proteases, including dipeptidyl peptidase 9 (DPP9), thrombin, prolyl endopeptidase (PREP), and fibroblast activation protein (FAP). The cytotoxic effect of 27 was evaluated in cancer cell lines HepG-2 and Caco-2 and in somatic RAW264.7 cells and RPTECs. Compound 27 showed no toxicity to normal cells and weak toxicity to cancer cells. In a living cell imaging assay, 27 blocked the dipeptidase activity of DPP4 in both Caco-2 and HepG-2 cells. This compound also dose-dependently suppressed the expression levels of the chemokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß).


Assuntos
Chalconas , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Células CACO-2 , Chalconas/farmacologia , Anti-Inflamatórios/farmacologia
10.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1705-1710, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282944

RESUMO

Novel drug discovery from the active ingredients of traditional Chinese medicine is the most distinctive feature and advantageous field of China, which has provided an unprecedented opportunity. However, there are still problems such as unclear functional substance basis, action targets and mechanism, which greatly hinder the clinical transformation of active ingredients in traditional Chinese medicine. Based on the analysis of the current status and progress of innovative drug research and development in China, this paper aimed to explore the prospect and difficulties of the development of natural active ingredients from traditional Chinese medicine, and to explore the efficient discovery of trace active ingredients in traditional Chinese medicine, and obtain drug candidates with novel chemical structure, unique target/mechanism and independent intellectual property rights, in order to provide a new strategy and a new model for the development of natural medicine with Chinese characteristics.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Pesquisa , Descoberta de Drogas , China
11.
Eur J Med Chem ; 258: 115552, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315474

RESUMO

Human cytochrome P450 1B1 (hCYP1B1), an extrahepatic cytochrome P450 enzyme over-expressed in various tumors, has been validated as a promising target for preventing and treating cancers. Herein, two series of chalcone derivatives were synthesized to discover potent hCYP1B1 inhibitors without AhR agonist effect. Structure-activity relationship (SAR) studies demonstrated that 4'-trifluoromethyl on the B-ring strongly enhanced the anti-hCYP1B1 effects, identifying A9 as a promising lead compound. Further SAR analysis on A9 derivatives (modified A-ring of 4'-trifluoromethylchalcone) showed that introducing 2-methoxyl improved the anti-hCYP1B1 effect and selectivity, while introducing a methoxyl at the C-4 site was beneficial for avoiding AhR activation. Ultimately, five 4'-trifluoromethyl chalcones were identified as potent hCYP1B1 inhibitors (IC50 < 10 nM), while B18 exhibits the most potent anti-hCYP1B1 effect (IC50 = 3.6 nM), suitable metabolic stability and good cell-permeability. B18 also acted as an AhR antagonist and could down-regulate hCYP1B1 in living systems. Mechanistic studies showed that B18 potently inhibited hCYP1B1 in a competitive inhibition manner (Ki = 3.92 nM), while docking simulations revealed that B18 could tightly bind to the catalytic cavity of hCYP1B1 mainly via hydrophobic and hydrogen-bonding interactions. Furthermore, B18 could potently inhibit hCYP1B1 in living cells and showed remarkable anti-migration ability on MFC-7 cells. Taken together, this study deciphered the SARs of chalcones as hCYP1B1 inhibitors and provided several potent hCYP1B1 inhibitors as promising candidates for the development of more efficacious anti-migration agents.


Assuntos
Chalconas , Humanos , Chalconas/farmacologia , Chalconas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
12.
J Med Chem ; 66(10): 6743-6755, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37145039

RESUMO

Cytochrome P450 3A4 (CYP3A4) is a key xenobiotic-metabolizing enzyme-mediated drug metabolism and drug-drug interaction (DDI). Herein, an effective strategy was used to rationally construct a practical two-photon fluorogenic substrate for hCYP3A4. Following two-round structure-based substrate discovery and optimization, we have successfully constructed a hCYP3A4 fluorogenic substrate (F8) with desirable features, including high binding affinity, rapid response, excellent isoform specificity, and low cytotoxicity. Under physiological conditions, F8 is readily metabolized by hCYP3A4 to form a brightly fluorescent product (4-OH F8) that can be easily detected by various fluorescence devices. The practicality of F8 for real-time sensing and functional imaging of hCYP3A4 has been examined in tissue preparations, living cells, and organ slices. F8 also demonstrates good performance for high-throughput screening of hCYP3A4 inhibitors and assessing DDI potentials in vivo. Collectively, this study develops an advanced molecular tool for sensing CYP3A4 activities in biological systems, which strongly facilitates CYP3A4-associated fundamental and applied research studies.


Assuntos
Citocromo P-450 CYP3A , Corantes Fluorescentes , Citocromo P-450 CYP3A/metabolismo , Corantes Fluorescentes/farmacologia , Interações Medicamentosas
13.
Biosensors (Basel) ; 13(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37185551

RESUMO

Enzymes constitute an extremely important class of biomacromolecules with diverse catalytic functions, which have been validated as key mediators for regulating cellular metabolism and maintaining homeostasis in living organisms [...].


Assuntos
Técnicas Biossensoriais
14.
Analyst ; 148(10): 2225-2236, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092796

RESUMO

Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Obesidade , Triglicerídeos
15.
Phytomedicine ; 114: 154796, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037086

RESUMO

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Peptídeos , Extratos Vegetais , Espectrometria de Massas em Tandem
16.
Med Chem Res ; 32(5): 899-909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056462

RESUMO

Previous in vivo and in vitro studies revealed that esculetin (Fig. 1) has anti-hepatitis B virus (anti-HBV) activity as well as a protective effect on liver damage caused by duck hepatitis B virus. We designed and synthesized a series of esculetin derivatives, introduced side chains containing various amino groups into site 7 of the parent structure, and synthesized C-4 and C-8 substituted derivatives with the goal of investigating their anti-HBV activities. In vitro anti-HBV activity was performed against HepG2.2.15 cells by using Enzyme-Linked Immunosorbent Assay(ELISA) kit and cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay with lamivudine as the positive control. The results demonstrated that several compounds showed moderate anti-HBV activity, while the introduction of morpholine groups could significantly inhibit the expression of hepatitis B e antigen (HBeAg) and the introduction of the 2-methylimidazole group could significantly inhibit the expression of Hepatitis B surface antigen (HBsAg). Among all tested compounds, compound 4a demonstrated the best anti-HBeAg activity (IC50 = 15.8 ± 4.2 µM), while compound 6d demonstrated the best anti-HBsAg activity (IC50 = 21.4 ± 2.8 µM). Compounds 6b and 6c showed moderate anti-HBV activity and HBsAg inhibition. Compounds 4b showed moderate anti-HBV activity and an inhibitory effect on HBeAg. In addition, compounds 4a, 4c, 4d, 6b, 6c and 6d showed improved metabolic stability. This study provides useful guidance for the discovery of anti-HBV drugs, which merits further investigation.

17.
Phytomedicine ; 113: 154732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933457

RESUMO

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Assuntos
Adenocarcinoma de Pulmão , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
18.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832049

RESUMO

Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and inhibition of hPL is effective in reducing triglyceride intake, thereby preventing and treating obesity. In this study, a series of fatty acids with different carbon chain lengths were constructed to the fluorophore resorufin based on the substrate preference of hPL. Among them, RLE was found to have the best combination of stability, specificity, sensitivity and reactivity towards hPL. Under physiological conditions, RLE can be rapidly hydrolyzed by hPL and released to resorufin, which triggered approximately 100-fold fluorescence enhancement at 590 nm. RLE was successfully applied for sensing and imaging of endogenous PL in living systems with low cytotoxicity and high imaging resolution. Moreover, a visual high-throughput screening platform was established using RLE, and the inhibitory effects of hundreds of drugs and natural products toward hPL were evaluated. Collectively, this study reports a novel and highly specific enzyme-activatable fluorogenic substrate for hPL that could serve as a powerful tool for monitoring hPL activity in complex biological systems and showcases the potential to explore physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Oxazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...