Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11322, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760393

RESUMO

Based on the theory of empty hole effect of cutting blasting, the Hopkinson effect and Saint-Venant principle are integrated to establish a two-dimensional calculation model of dynamic stress evolution of the holes wall, and then the dynamic fracture mechanism and damage distribution mode of the rock mass in the cutting area under the action of longitudinal waves are predicted. The results of the calculation and numerical simulation are verified by experiments, and the results show that: The time-varying stress function of the circular cavity wall conforms to the periodic dynamic evolution of the trigonometric function, and the theoretical calculation is consistent with the simulation results. Through the calculation of the round holes cut model and the square empty hole cut model, the change of the shape of the holes in the cut area changes the failure form of the surrounding rock mass. The circular empty hole wall is affected by the stress wave to produce "interval ring" destruction, and the effect of the reflected stretch wave is inhibited. The large range of rock mass in the square empty hole wall produces tensile and shear failure, and the rock mass collapses inward under the influence of the second stage stress. Among them, the empty space utilization rate of the square empty hole model is about 8.5 times that of the circular holes model. Vibration monitoring in the center of the cutting area shows that the vibration effect of the circular empty hole is larger than that of the square empty hole, and the proportion of rock breaking energy is lower.

2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430797

RESUMO

A gene encoding a protein similar to germin-like proteins (GLPs) was obtained from maize (Zea mays) and designated as ZmGLP1. Based on the ZmGLP1 conserved domain and phylogenetic status, ZmGLP1 was grouped into GLP subfamily b and has high similarity to OsGLP8-14 from Oryza sativa. ZmGLP1 is expressed in different maize tissues during different growth stages and is mainly expressed in the stems and leaves. The induced expression patterns confirmed that ZmGLP1 is differentially expressed under abiotic and hormone stress; it had an early response to jasmonic acid (JA) and ethephon (ET) but a late response to salicylic acid (SA) and was significantly upregulated under Bipolaris maydis infection. The overexpression of ZmGLP1 in Arabidopsis improved the resistance to biotrophic Pseudomonas syringae pv. tomato DC3000 (PstDC3000) and necrotrophic Sclerotinia sclerotiorum by inducing the expression of JA signaling-related genes. Moreover, the hydrogen peroxide (H2O2) content increased due to the overexpression of ZmGLP1 in Arabidopsis after pathogen infection. Compared to the wild-type control, the H2O2 content of ZmGLP1-overexpressing Arabidopsis infected by PstDC3000 increased significantly but was lower in transgenic plants infected with S. sclerotiorum. Furthermore, high-performance liquid chromatography-tandem mass (HPLC-MS/MS) spectrometry showed that the JA contents of ZmGLP1-overexpressing Arabidopsis markedly increased after pathogen infection. However, the improved resistance of ZmGLP1-overexpressing Arabidopsis pretreated with the JA biosynthetic inhibitor, sodium diethyldithiocarbamate trihydrate (DIECA), was suppressed. Based on these findings, we speculate that ZmGLP1 plays an important role in the regulation of Arabidopsis resistance to biotrophic PstDC3000 and necrotrophic S. sclerotiorum; the regulatory effects are achieved by inducing plant oxidative burst activity and activation of the JA signaling pathway.


Assuntos
Arabidopsis , Solanum lycopersicum , Zea mays/genética , Arabidopsis/genética , Filogenia , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas em Tandem , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA