Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Soft Robot ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963793

RESUMO

In recent years, the exploration of worm-like robots has garnered much attention for their adaptability in confined environments. However, current designs face challenges in fully utilizing the mechanical properties of structures/materials to replicate the superior performance of real worms. In this article, we propose an approach to address this limitation based on the stacked Miura origami structure, achieving the seamless integration of structural design, mechanical properties, and robotic functionalities, that is, the mechanical properties originate from the geometric design of the origami structure and at the same time serve the locomotion capability of the robot. Three major advantages of our design are: the implementation of origami technology facilitates a more accessible and convenient fabrication process for segmented robotic skin with periodicity and flexibility, as well as robotic bristles with anchoring effect; the utilization of the Poisson's ratio effect for deformation amplification; and the incorporation of localized folding motion for continuous peristaltic locomotion. Utilizing the high geometric designability inherent in origami, our robot demonstrates customizable morphing and quantifiable mechanical properties. Based on the origami worm-like robot prototype, we experimentally verified the effectiveness of the proposed design in realizing the deformation amplification effect and localized folding motion. By comparing this to a conventional worm-like robot with discontinuous deformation, we highlight the merits of these mechanical properties in enhancing the robot's mobility. To sum up, this article showcases a bottom-up approach to robot development, including geometric design, mechanical characterization, and functionality realization, presenting a unique perspective for advancing the development of bioinspired soft robots.

2.
Nano Lett ; 24(28): 8732-8740, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958407

RESUMO

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.


Assuntos
RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , Catálise , Hibridização de Ácido Nucleico , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Cinética , RNA de Interação com Piwi
3.
Front Plant Sci ; 15: 1421207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933462

RESUMO

Introduction: Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods: An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion: These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.

4.
Rice (N Y) ; 17(1): 41, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916708

RESUMO

Great yield-enhancing prospects of autotetraploid rice was restricted by various polyploidy-induced reproductive dysfunction. To surmount these challenges, our group has generated a series of valuable fertile tetraploid lines (denoted as neo-tetraploid rice) through 20-year efforts. With this context, a G-type lectin receptor-like kinase, OsNRFG6, was identified as a pivotal factor associated with reproductive regulation in neo-tetraploid rice. Nevertheless, it is still elusive about a comprehensive understanding of its precise functional roles and underlying molecular mechanisms during reproduction of neo-tetraploid rice. Here, we demonstrated that OsNRFG6 executed a constitutive expression pattern and encoded proteins localizing in perinucleus and endoplasmic reticulum. Subsequently, four independent mutant lines of OsNRFG6 within neo-tetraploid rice background were further identified, all displaying low seed-setting rate due to abortive embryo sacs and defective double fertilization. RNA-seq and RT-qPCR revealed a significant down-regulation of OsNRFG6 and female reproductive genes such as OsMEL1 and LOG in ovaries prior to and post-fertilization, attributing this effect to OsNRFG6 mutation. Furthermore, through yeast-two hybrids, bimolecular fluorescence complementation assays, and luciferase complementation imaging assays, it was determined that OsNRFG6 could interact with itself and two female reproductive proteins (LOG and OsDES1) to form protein complexes. These results elucidate the reproductive functions and molecular pathway governed by OsNRFG6 in regulating fertility of neo-tetraploid rice, offering insights into molecular understanding of fertility improvement in polyploid rice.

5.
Virol J ; 21(1): 131, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840200

RESUMO

Neonatal pulmonary hemorrhage is a late manifestation of various diseases. Premature delivery and low body weight are frequently observed as high-risk factors, characterized by acute onset, rapid progression, and high mortality rates. Pulmonary hemorrhage caused by cytomegalovirus infection in newborns with normal immune function is a rare occurrence. This case report focuses on a term neonate with normal birth weight who presented solely with nasal obstruction shortly after birth. However, 4 days after birth, the newborn experienced a sudden onset of blood gushing from both the mouth and nasal cavity. The patient was diagnosed with gastrointestinal bleeding, neonatal pneumonia and neonatal lung consolidation. And he was discharged after ten days of symptomatic treatment. However, upon returning home, the patient experienced a sudden onset of bleeding from the mouth and nose, leading to his untimely demise. Subsequent autopsy revealed the presence of pulmonary hemorrhage in newborn, which presented as interstitial pneumonia. The cause of pulmonary hemorrhage is cytomegalovirus infection. This case emphasizes the importance of pediatricians enhancing their skills in differentiating pulmonary hemorrhage, especially from cytomegalovirus pneumonia.


Assuntos
Infecções por Citomegalovirus , Hemorragia , Humanos , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/diagnóstico , Recém-Nascido , Masculino , Evolução Fatal , Hemorragia/etiologia , Citomegalovirus , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/virologia , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Autopsia , Pneumopatias/virologia , Pneumopatias/etiologia
6.
Sci Adv ; 10(20): eadl4387, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748786

RESUMO

4D printing enables 3D printed structures to change shape over "time" in response to environmental stimulus. Because of relatively high modulus, shape memory polymers (SMPs) have been widely used for 4D printing. However, most SMPs for 4D printing are thermosets, which only have one permanent shape. Despite the efforts that implement covalent adaptable networks (CANs) into SMPs to achieve shape reconfigurability, weak thermomechanical properties of the current CAN-SMPs exclude them from practical applications. Here, we report reconfigurable 4D printing via mechanically robust CAN-SMPs (MRC-SMPs), which have high deformability at both programming and reconfiguration temperatures (>1400%), high Tg (75°C), and high room temperature modulus (1.06 GPa). The high printability for DLP high-resolution 3D printing allows MRC-SMPs to create highly complex SMP 3D structures that can be reconfigured multiple times under large deformation. The demonstrations show that the reconfigurable 4D printing allows one printed SMP structure to fulfill multiple tasks.

7.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657771

RESUMO

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Núcleo Accumbens , Tomografia por Emissão de Pósitrons , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagem , Adulto , Núcleos Septais/metabolismo , Núcleos Septais/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Resultado do Tratamento
8.
Nat Commun ; 15(1): 2322, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485752

RESUMO

Active origami capable of precise deployment control, enabling on-demand modulation of its properties, is highly desirable in multi-scenario and multi-task applications. While 4D printing with shape memory composites holds great promise to realize such active origami, it still faces challenges such as low load-bearing capacity and limited transformable states. Here, we report a fabrication-design-actuation method of precisely controlled electrothermal origami with excellent mechanical performance and spatiotemporal controllability, utilizing 4D printing of continuous fiber-reinforced composites. The incorporation of continuous carbon fibers empowers electrothermal origami with a controllable actuation process via Joule heating, increased actuation force through improved heat conduction, and enhanced mechanical properties as a result of reinforcement. By modeling the multi-physical and highly nonlinear deploying process, we attain precise control over the active origami, allowing it to be reconfigured and locked into any desired configuration by manipulating activation parameters. Furthermore, we showcase the versatility of electrothermal origami by constructing reconfigurable robots, customizable architected materials, and programmable wings, which broadens the practical engineering applications of origami.

9.
Emerg Microbes Infect ; 13(1): 2316809, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323591

RESUMO

Previous studies have mainly focused on outpatient cases of skin and soft tissue infections (SSTIs), with limited attention to inpatient occurrences. Thus, we aimed to compare the clinical parameters of inpatients with SSTIs, performed genomic characterization, and determined the subtypes of Panton-Valentine leucocidin (PVL) bacteriophages of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from these patients. We found that PVL-positive patients had shorter hospital stays (mean, 9 vs. 24 days; p < 0.001) and abscess resolution durations (mean, 8 vs. 13 days; p < 0.01). PVL-positive MRSA-induced SSTIs were more frequently associated with abscesses [36/55 (65.5%) vs. 15/124 (12.1%), p < 0.001], with 52.7% undergoing incision and drainage; over 80% of PVL-negative patients received incision, drainage, and antibiotics. In PVL-positive patients receiving empirical antibiotics, anti-staphylococcal agents such as vancomycin and linezolid were administered less frequently (32.7%, 18/55) than in PVL-negative patients (74.2%, 92/124), indicating that patients with PVL-positive SSTIs are more likely to require surgical drainage rather than antimicrobial treatment. We also found that the ST59 lineage was predominant, regardless of PVL status (41.3%, 74/179). Additionally, we investigated the linear structure of the lukSF-PV gene, revealing that major clusters were associated with specific STs, suggesting independent acquisition of PVL by different strain types and indicating that significant diversity was observed even within PVL-positive strains detected in the same facility. Overall, our study provides comprehensive insights into the clinical, genetic, and phage-related aspects of MRSA-induced SSTIs in hospitalized patients and contributes to a more profound understanding of the epidemiology and evolution of these pathogens in the Chinese population.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Infecções Cutâneas Estafilocócicas , Humanos , Pacientes Internados , Infecções dos Tecidos Moles/epidemiologia , Estudos Retrospectivos , Leucocidinas/genética , Infecções Estafilocócicas/epidemiologia , Infecções Cutâneas Estafilocócicas/epidemiologia , Exotoxinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Abscesso , Infecções Comunitárias Adquiridas/epidemiologia
10.
Heliyon ; 10(4): e26021, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375312

RESUMO

Objectives: This study aimed to explore the potential of full dynamic PET kinetic analysis in assessing amyloid binding and perfusion in the cardiac region using 18F-Florbetapir PET, establishing a quantitative approach in the clinical assessment of cardiac amyloidosis disease. Materials & methods: The distribution volume ratios (DVRs) and the relative transport rate constant (R1), were estimated by a pseudo-simplified reference tissue model (pSRTM2) and pseudo-Logan plot (pLogan plot) with kidney reference for the region of interest-based and voxel-wise-based analyses. The parametric images generated using the pSRTM2 and linear regression with spatially constrained (LRSC) algorithm were then evaluated. Semi-quantitative analyses include standardized uptake value ratios at the early phase (SUVREP, 0.5-5 min) and late phase (SUVRLP, 50-60 min) were also calculated. Results: Ten participants [7 healthy controls (HC) and 3 cardiac amyloidosis (CA) subjects] underwent a 60-min dynamic 18F-Florbetapir PET scan. The DVRs estimated from pSRTM2 and Logan plot were significantly increased (HC vs CA; DVRpSRTM2: 0.95 ± 0.11 vs 2.77 ± 0.42, t'(2.13) = 7.39, P = 0.015; DVRLogan: 0.80 ± 0.12 vs 2.90 ± 0.55, t'(2.08) = 6.56, P = 0.020), and R1 were remarkably decreased in CA groups, as compared to HCs (HC vs CA; 1.08 ± 0.37 vs 0.56 ± 0.10, t'(7.63) = 3.38, P = 0.010). The SUVREP and SUVRLP were highly correlated to R1 (r = 0.97, P < 0.001) and DVR(r = 0.99, P < 0.001), respectively. The DVRs in the total myocardium region increased slightly as the size of FWHM increased and became stable at a Gaussian filter ≥6 mm. The secular equilibrium of SUVR was reached at around 50-min p.i. time. Conclusion: The DVR and R1 estimated from cardiac dynamic 18F-Florbetapir PET using pSRTM with kidney pseudo-reference tissue are suggested to quantify cardiac amyloid deposition and relative perfusion, respectively, in amyloidosis patients and healthy controls. We recommend a dual-phase scan: 0.5-5 min and 50-60 min p.i. as the appropriate time window for clinically assessing cardiac amyloidosis and perfusion measurements using 18F-Florbetapir PET.

11.
Nat Commun ; 15(1): 758, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272972

RESUMO

4D printing technology combines 3D printing and stimulus-responsive materials, enabling construction of complex 3D objects efficiently. However, unlike smart soft materials, 4D printing of ceramics is a great challenge due to the extremely weak deformability of ceramics. Here, we report a feasible and efficient manufacturing and design approach to realize direct 4D printing of ceramics. Photocurable ceramic elastomer slurry and hydrogel precursor are developed for the fabrication of hydrogel-ceramic laminates via multimaterial digital light processing 3D printing. Flat patterned laminates evolve into complex 3D structures driven by hydrogel dehydration, and then turn into pure ceramics after sintering. Considering the dehydration-induced deformation and sintering-induced shape retraction, we develop a theoretical model to calculate the curvatures of bent laminate and sintered ceramic part. Then, we build a design flow for direct 4D printing of various complex ceramic objects. This approach opens a new avenue for the development of ceramic 4D printing technology.

12.
Nat Nanotechnol ; 19(1): 77-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605045

RESUMO

Incorporating a negative feedback loop in a synthetic material to enable complex self-regulative behaviours akin to living organisms remains a design challenge. Here we show that a hydrogel-based vehicle can follow the directions of photonic illumination with directional regulation inside a constraint-free, fluidic space. By manipulating the customized photothermal nanoparticles and the microscale pores in the polymeric matrix, we achieved strong chemomechanical deformation of the soft material. The vehicle swiftly assumes an optimal pose and creates directional flow around itself, which it follows to achieve robust full-space phototaxis. In addition, this phototaxis enables a series of complex underwater locomotions. We demonstrate that this versatility is generated by the synergy of photothermofluidic interactions resulting in closed-loop self-control and fast reconfigurability. The untethered, electronics-free, ambient-powered hydrogel vehicle manoeuvres through obstacles agilely, following illumination cues of moderate intensities, similar to that of natural sunlight.

13.
Insect Mol Biol ; 33(1): 1-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676698

RESUMO

Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Multiômica , Seda/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
14.
Chem Commun (Camb) ; 60(4): 408-411, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38084051

RESUMO

We construct a single quantum dot-based nanosensor for piRNA detection based on ligation-mediated multi-cycle signal amplification. This nanosensor is homogenous, selective, and sensitive with a detection limit of 0.104 fM. Moreover, it can detect the endogenous piRNA level in different cell lines, and discriminate cancer tissues from normal tissues.


Assuntos
RNA de Interação com Piwi , Pontos Quânticos , Linhagem Celular , RNA Interferente Pequeno/metabolismo
15.
ESC Heart Fail ; 11(1): 444-455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037178

RESUMO

AIMS: The present study aimed to phenotype the cerebral structural and glucose metabolic alterations in patients with heart failure (HF) using simultaneous positron emission tomography (PET)/magnetic resonance (MR) and to investigate their relationship to cardiac biomarkers and cognitive performance. METHODS AND RESULTS: Forty-two HF patients caused by ischaemic heart disease (mean age 67.2 ± 10.4, 32 males) and 32 age- and sex-matched healthy volunteers (mean age 61.3 ± 4.8, 18 males) were included in this study. Participants underwent simultaneous cerebral fluorine-18 (18 F) fluorodeoxyglucose PET/MR followed by cardiac MR scan, and neuropsychological scores were obtained to assess cognitive performance. The grey matter volume (GMV) and standardized uptake value ratio (SUVR) were calculated to examine cerebral structural and metabolic alterations. Cardiac biomarkers included cardiac MR parameters and cardiac serum laboratory tests. Mediation analysis was performed to explore the associations among cerebral alterations, cardiac biomarkers, and cognitive performance. HF patients demonstrated notable cognitive impairment compared with normal controls (P < 0.001). Furthermore, HF patients exhibited regional brain hypometabolism in the bilateral calcarine cortex, caudate nucleus, thalamus, hippocampus, precuneus, posterior cingulate cortex, lingual and olfactory cortex, and GMV reduction in bilateral thalamus and hippocampus (cluster level at P < 0.05, Gaussian random field correction). The SUVR of the hypometabolic brain regions was correlated with the Montreal Cognitive Assessment (MoCA) scores (r = 0.55, P = 0.038) and cardiac stroke volume (r = 0.49, P = 0.002). Cerebral hypometabolism played a key role in the relationship between the decreased stroke volume and MoCA scores, with a mediation effect of 33.2%. CONCLUSIONS: HF patients suffered cerebral metabolic and structural alterations in regions associated with cognition. The observed correlation between cardiac stroke volume and cognitive impairment underscored the potential influence of cerebral hypometabolism, suggesting that cerebral hypometabolism due to chronic systemic hypoperfusion may significantly contribute to cognitive impairment in HF patients.


Assuntos
Disfunção Cognitiva , Insuficiência Cardíaca , Masculino , Humanos , Volume Sistólico , Fluordesoxiglucose F18 , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Biomarcadores
16.
Adv Sci (Weinh) ; 10(36): e2303457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37983567

RESUMO

Gut microbiome is integral to the pathogenesis of ulcerative colitis. A novel probiotic Lactobacillus intestinalis (L. intestinalis) exerts a protective effect against dextran sodium sulfate-induced colitis in mice. Based on flow cytometry, colitis-associated Th17 cells are the target of L. intestinalis, which is supported by the lack of protective effects of L. intestinalis in T cell-null Rag1-/- mice or upon anti-IL-17-A antibody-treated mice. Although L. intestinalis exerts no direct effect on T cell differentiation, it decreases C/EBPA-driven gut epithelial SAA1 and SAA2 production, which in turn impairs Th17 cell differentiation. Cometabolism of L. intestinalis ALDH and host ALDH1A2 contributed to elevated biosynthesis of retinoic acid (RA), which accounts for the anti-colitis effect in RAR-α -mediated way. In a cohort of ulcerative colitis patients, it is observed that fecal abundance of L. intestinalis is negatively associated with the C/EBPA-SAA1/2-Th17 axis. Finally, L. intestinalis has a synergistic effect with mesalazine in alleviating murine colitis. In conclusion, L. intestinalis and associated metabolites, RA, have potential therapeutic effects for suppressing colonic inflammation by modulating the crosstalk between intestinal epithelia and immunity.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Células Th17/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Células Epiteliais/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico
17.
Nat Commun ; 14(1): 7769, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012169

RESUMO

Post-surgical treatments of the human throat often require continuous monitoring of diverse vital and muscle activities. However, wireless, continuous monitoring and analysis of these activities directly from the throat skin have not been developed. Here, we report the design and validation of a fully integrated standalone stretchable device platform that provides wireless measurements and machine learning-based analysis of diverse vibrations and muscle electrical activities from the throat. We demonstrate that the modified composite hydrogel with low contact impedance and reduced adhesion provides high-quality long-term monitoring of local muscle electrical signals. We show that the integrated triaxial broad-band accelerometer also measures large body movements and subtle physiological activities/vibrations. We find that the combined data processed by a 2D-like sequential feature extractor with fully connected neurons facilitates the classification of various motion/speech features at a high accuracy of over 90%, which adapts to the data with noise from motion artifacts or the data from new human subjects. The resulting standalone stretchable device with wireless monitoring and machine learning-based processing capabilities paves the way to design and apply wearable skin-interfaced systems for the remote monitoring and treatment evaluation of various diseases.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Software , Movimento , Desenho de Equipamento
18.
ACS Appl Mater Interfaces ; 15(40): 47509-47519, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769329

RESUMO

Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.

19.
Quant Imaging Med Surg ; 13(8): 5230-5241, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581091

RESUMO

Background: Total variation regularized expectation maximization (TVREM) reconstruction algorithm on the image quality of gallium (68GA) prostate-specific membrane antigen-11 ([68Ga]Ga-PSMA-11) total-body positron emission tomography/computed tomography (PET/CT). Methods: Images of a phantom with small hot sphere inserts and the total-body PET/CT scans of 51 prostate cancer patients undergoing [68Ga]Ga-PSMA-11 were reconstructed using TVREM with 5 different penalization factors between 0.09 and 0.45 and for 20-, 40-, 60-, 120-, and 300-second acquisition, respectively. As a comparison, the same data were also reconstructed using the ordered subset expectation maximization (OSEM) with 3 iterations, 20 subsets, and 300 second acquisition. The contrast recovery coefficients (CRC) and background variability (BV) of the phantom, the tumor-to-background ratios (TBR), the contrast recovery (CR) ratio, the image noise of the liver, and maximum standard uptake value (SUVmax) of the lesions were calculated to evaluate the image quality. The clinical performance of the images was evaluated by 2 radiologists with a 5-point scale (1-poor, 5-excellent). Results: The TVREM reconstructions groups fwith 120 second acquisition and the penalization of 0.27 to 0.45 showed the best performance in terms of CR, TBR, image noise, and the gain of SUVmax compared to that obtained in the OSEM 300 second group. Even the image noise of the TVREM 120 second group with a penalization factor of 0.27 and 0.36 was comparable to the OSEM 300 second group; the lesions' SUVmax increased by 28% whereas the image noise decreased by 5% and 14%, respectively. The TVREM 120 second group with a penalization factor of 0.36 (5.00±0.00) had the highest qualitative score that equaled OSEM and TVREM for the 300 second (P>0.05) group. Conclusions: Our study has shown the potential of the TVREM reconstruction algorithm with optimized penalization factors to achieve comparable [68Ga]Ga-PSMA-11 total-body PET/CT image quality with a shorter acquisition time, compared with the conventional OSEM reconstruction algorithm.

20.
Nat Commun ; 14(1): 4853, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563150

RESUMO

Stretchable ionotronics have drawn increasing attention during the past decade, enabling myriad applications in engineering and biomedicine. However, existing ionotronic sensors suffer from limited sensing capabilities due to simple device structures and poor stability due to the leakage of ingredients. In this study, we rationally design and fabricate a plethora of architected leakage-free ionotronic sensors with multi-mode sensing capabilities, using DLP-based 3D printing and a polyelectrolyte elastomer. We synthesize a photo-polymerizable ionic monomer for the polyelectrolyte elastomer, which is stretchable, transparent, ionically conductive, thermally stable, and leakage-resistant. The printed sensors possess robust interfaces and extraordinary long-term stability. The multi-material 3D printing allows high flexibility in structural design, enabling the sensing of tension, compression, shear, and torsion, with on-demand tailorable sensitivities through elaborate programming of device architectures. Furthermore, we fabricate integrated ionotronic sensors that can perceive different mechanical stimuli simultaneously without mutual signal interferences. We demonstrate a sensing kit consisting of four shear sensors and one compressive sensor, and connect it to a remote-control system that is programmed to wirelessly control the flight of a drone. Multi-material 3D printing of leakage-free polyelectrolyte elastomers paves new avenues for manufacturing stretchable ionotronics by resolving the deficiencies of stability and functionalities simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...