Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Surg Oncol ; 50(6): 108262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531231

RESUMO

BACKGROUND: Endoscopic therapy (ET) of gastrointestinal stromal tumors (GIST) has become a viable treatment. We intended to compare long-term outcomes of ET versus surgical resection for 2-5 cm GIST using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS: A multicenter retrospective study was conducted to compare the long-term outcomes of patients treated with ET and surgical resection for GIST. The multivariate Cox proportional hazards models were used to identify predictors for patients survival. To balance the clinicopathologic characteristics, a 1:1 propensity score matching (PSM) was utilized. RESULTS: A total of 749 patients with 2-5 cm GIST were enrolled, of whom 113 accepted ET and 636 underwent surgical resection. Before PSM, there was no significant difference in long-term outcomes between ET and surgical resection (5-year overall survival (OS): 93.5% vs. 91.6%, P=0.374; 5-year cancer-specific survival (CSS): 99.1% vs. 96.5%, P=0.546; 10-year OS: 71.1% vs. 78.2%, P=0.374; 10-year CSS: 93.6% vs. 92.7%, P=0.546). After adjusting for the relevant variables using the multivariable Cox proportional hazards models, we observed that the ET and surgical resection groups were similar in OS (HR 0.726, 95%CI 0.457-1.153, P=0.175) and CSS (HR 1.286, 95%CI 0.474-3.488, P=0.621). After PSM, the long-term OS and CSS of patients with 2-5 cm GIST after ET and surgical resection were comparable. CONCLUSIONS: We found that the long-term survival of patients with 2-5 cm gastric GIST after ET and surgical resection were comparable. Further high-quality studies are needed to confirm the role of ET in 2-5 cm GIST.


Assuntos
Tumores do Estroma Gastrointestinal , Pontuação de Propensão , Programa de SEER , Neoplasias Gástricas , Humanos , Tumores do Estroma Gastrointestinal/cirurgia , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Gastrectomia/métodos , Resultado do Tratamento , Modelos de Riscos Proporcionais , Adulto , Carga Tumoral
3.
Adv Healthc Mater ; 12(22): e2300252, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37196347

RESUMO

Pulmonary hypertension (PH) is a disease of pulmonary artery stenosis and blockage caused by abnormal pulmonary artery smooth muscle cells (PASMCs), with high morbidity and mortality. High levels of reactive oxygen species (ROS) in pulmonary arteries play a crucial role in inducing phenotypic switch and abnormal proliferation of PASMCs. However, antioxidants are rarely approved for the treatment of PH because of a lack of targeting and low bioavailability. In this study, the presence of an enhanced permeability and retention effect (EPR)-like effect in the pulmonary arteries of PH is revealed by tissue transmission electron microscopy (TEM). Subsequently, for the first time, tungsten-based polyoxometalate nanodots (WNDs) are developed with potent elimination of multiple ROS for efficient treatment of PH thanks to the high proportion of reduced W5+ . WNDs are effectively enriched in the pulmonary artery by intravenous injection because of the EPR-like effect of PH, and significantly prevent the abnormal proliferation of PASMCs, greatly improve the remodeling of pulmonary arteries, and ultimately improve right heart function. In conclusion, this work provides a novel and effective solution to the dilemma of targeting ROS for the treatment of PH.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Espécies Reativas de Oxigênio , Tungstênio/farmacologia , Hipóxia , Miócitos de Músculo Liso , Proliferação de Células/fisiologia , Células Cultivadas
4.
Biochem Pharmacol ; 207: 115350, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435201

RESUMO

The pulmonary vascular remodeling (PVR), the pathological basis of pulmonary hypertension (PH), entails pulmonary artery smooth muscle cells (PASMCs) phenotypic switching, but appreciation of the underlying mechanisms is incomplete. Exosomes, a novel transfer machinery enabling delivery of its cargos to recipient cells, have been recently implicated in cardiovascular diseases including PH. The two critical questions of whether plasma-derived exosomes drive PASMCs phenotypic switching and what cargo the exosomes transport, however, remain unclear. Herein, by means of transmission electron microscopy and protein detection, we for the first time, characterized lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) as a novel cargo of plasma-derived exosomes in PH. With LOX-1 knockout (Olr1-/-) rats-derived exosomes, we demonstrated that exosomal LOX-1 could be transferred into PASMCs and thus elicited cell phenotypic switching. Of importance, Olr1-/- rats exhibited no cell phenotypic switching and developed less severe PH, but administration of wild type rather than Olr1-/- exosomes to Olr1-/- rats recapitulated the phenotype of PH with robust PASMCs phenotypic switching. We also revealed that exosomal LOX-1 triggered PASMCs phenotypic switching, PVR and ultimately PH via ERK1/2-KLF4 signaling axis. This study has generated proof that plasma-derived exosomes confer PH by delivering LOX-1 into PASMCs. Hence, exosomal LOX-1 represents a novel exploitable target for PH prevention and treatment.


Assuntos
Exossomos , Hipertensão Pulmonar , Ratos , Animais , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Hipertensão Pulmonar/metabolismo , Exossomos/metabolismo , Proliferação de Células/fisiologia , Hipóxia/metabolismo , Fenótipo , Miócitos de Músculo Liso/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Células Cultivadas , Remodelação Vascular/fisiologia
5.
Biomed Res Int ; 2021: 8032978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754882

RESUMO

OBJECTIVES: The aim of this study was to provide the first study to systematically analyze the efficacy and safety of PCSK9-mAbs in the treatment of familial hypercholesterolemia (FH). METHODS: A computer was used to search the electronic Cochrane Library, PubMed/MEDLINE, and Embase databases for clinical trials using the following search terms: "AMG 145", "evolocumab", "SAR236553/REGN727", "alirocumab", "RG7652", "LY3015014", "RN316/bococizumab", "PCSK9", and "familial hypercholesterolemia" up to November 2020. Study quality was assessed with the Cochrane Collaboration's tool, and publication bias was evaluated by a contour-enhanced funnel plot and the Harbord modification of the Egger test. After obtaining the data, a meta-analysis was performed using R software, version 4.0.3. RESULTS: A meta-analysis was performed on 7 clinical trials (926 total patients). The results showed that PCSK9-mAbs reduced the LDL-C level by the greatest margin, WMD -49.14%, 95% CI: -55.81 to -42.47%, on FH versus control groups. PCSK9-mAbs also significantly reduced lipoprotein (a) (Lp (a)), total cholesterol (TC), triglycerides (TG), apolipoprotein-B (Apo-B), and non-high-density lipoprotein cholesterol (non-HDL-C) levels and increased HDL-C and apolipoprotein-A1 (Apo-A1) levels of beneficial lipoproteins. Moreover, no significant difference was found between PCSK9-mAbs treatment and placebo in common adverse events, serious events, and laboratory adverse events. CONCLUSION: PCSK9-mAbs significantly decreased LDL-C and other lipid levels with satisfactory safety and tolerability in FH treatment.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Anticolesterolemiantes/efeitos adversos , Doenças Cardiovasculares/tratamento farmacológico , China , LDL-Colesterol , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/fisiopatologia , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo , Resultado do Tratamento
6.
Biomed Res Int ; 2021: 2202888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513987

RESUMO

The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodeling in pulmonary hypertension (PH). It has been reported that miR-137 inhibits the proliferation of tumor cells. However, whether miR-137 is involved in PH remains unclear. In this study, male Sprague-Dawley rats were subjected to 10% O2 for 3 weeks to establish PH, and rat primary PASMCs were treated with hypoxia (3% O2) for 48 h to induce cell proliferation. The effect of miR-137 on PASMC proliferation and calpain-2 expression was assessed by transfecting miR-137 mimic and inhibitor. The effect of calpain-2 on PASMC proliferation was assessed by transfecting calpain-2 siRNA. The present study found for the first time that miR-137 was downregulated in pulmonary arteries of hypoxic PH rats and in hypoxia-treated PASMCs. miR-137 mimic inhibited hypoxia-induced PASMC proliferation and upregulation of calpain-2 expression in PASMCs. Furthermore, miR-137 inhibitor induced the proliferation of PASMCs under normoxia, and knockdown of calpain-2 mRNA by siRNA significantly inhibited hypoxia-induced proliferation of PASMCs. Our study demonstrated that hypoxia-induced downregulation of miR-137 expression promoted the proliferation of PASMCs by targeting calpain-2, thereby potentially resulting in pulmonary vascular remodeling in hypoxic PH.


Assuntos
Calpaína/genética , Hipertensão Pulmonar/genética , MicroRNAs/genética , Animais , Calpaína/metabolismo , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Masculino , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/genética
7.
Cell Signal ; 87: 110149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520855

RESUMO

Continuous recruitment and inappropriate activation of platelets in pulmonary arteries contribute to pulmonary vascular remodeling in pulmonary hypertension (PH). Our previous study has demonstrated that lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) regulates the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Phosphatidylserine exposed on the surface of activated platelets is a ligand for LOX-1. However, whether hypoxia-activated platelets stimulate the proliferation and migration of PASMCs by phosphatidylserine/LOX-1 signaling-impelled intercellular communication remains unclear. The present study found that rats treated with hypoxia (10% O2) for 21 days revealed PH with the activation of platelets and the recruitment of platelets in pulmonary arteries, and LOX-1 knockout inhibited hypoxia-induced PH and platelets activation. Notably, co-incubation of PASMCs with hypoxic PH rats-derived platelets up-regulated LOX-1 expression in PASMCs leading to the proliferation and migration of PASMCs, which was inhibited by the phosphatidylserine inhibitor annexin V or the LOX-1 neutralizing antibody. LOX-1 knockout led to decreased proliferation and migration of PASMCs stimulated by hypoxia-activated platelets. In rats, hypoxia up-regulated the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and the expression of Pim-1 in pulmonary arteries. Hypoxia-activated platelets also up-regulated the phosphorylation of Stat3 and the expression of Pim-1 in PASMCs, which was inhibited by annexin V, the LOX-1 neutralizing antibody, the protein kinase C inhibitor and LOX-1 knockout. In conclusion, we for the first time demonstrated that hypoxia-activated platelets stimulated the proliferation and migration of PASMCs by phosphatidylserine/LOX-1/PKC/Stat3/Pim-1 signaling-impelled intercellular communication, thereby potentially contributing to hypoxic pulmonary vascular remodeling.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Animais , Plaquetas/metabolismo , Comunicação Celular , Proliferação de Células/fisiologia , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilserinas/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Receptores Depuradores Classe E
8.
Eur J Pharmacol ; 908: 174307, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34245748

RESUMO

Pulmonary vascular remodeling (PVR) is the pathological basis of pulmonary hypertension (PH). Incomplete understanding of PVR etiology has hindered drug development for this devastating disease, which exhibits poor prognosis despite the currently available therapies. Endothelial-to-mesenchymal transition (EndMT), a process of cell transdifferentiation, has been recently implicated in cardiovascular diseases, including PH. But the questions of how EndMT occurs and how to pharmacologically target EndMT in vivo have yet to be further answered. Herein, by performing hematoxylin-eosin and immunofluorescence staining, transmission electron microscopy and Western blotting, we found that EndMT plays a key role in the pathogenesis of PH, and importantly that aspirin, a FDA-approved widely used drug, was capable of ameliorating PVR in a preclinical rat model of hypoxia-induced PH. Moreover, aspirin exerted its inhibitory effects on EndMT in vitro and in vivo by suppressing HIF-1α/TGF-ß1/Smads/Snail signaling pathway. Our data suggest that EndMT represents an intriguing drug target for the prevention and treatment of hypoxic PH and that aspirin may be repurposed to meet the urgent therapeutic needs of hypoxic PH patients.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Animais , Aspirina/farmacologia , Endotélio , Transição Epitelial-Mesenquimal , Ratos , Proteína Smad3 , Fator de Crescimento Transformador beta1
9.
Life Sci ; 255: 117822, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450174

RESUMO

AIM: Proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are regarded as the primary factors resulting in pulmonary arterial remodeling in pulmonary hypertension (PH). Myeloid ecotropic viral integration site 1 (MEIS1) has been positioned as a negative cardiomyocyte cell cycle regulator and regulates proliferation of multiple kinds of cancer cells. Whether MESI1 is involved in the proliferation and migration of PASMCs deserves to be identified. MAIN METHODS: Sprague Dawley rats were exposed to hypoxia condition (10% O2) for 4 weeks to induce PH and primary rat PASMCs were cultured in hypoxia condition (3% O2) for 48 h to induce proliferation and migration. Immunohistochemistry, immunofluorescence, reverse transcription PCR and Western blot analysis were performed to detect the expressions of target mRNAs and proteins. EDU, CCK8 and wound healing assays were conducted to measure the proliferation and migration of PASMCs. KEY FINDINGS: Hypoxia down-regulated the expression of MEIS1 (both mRNA and protein) in pulmonary arteries and PASMCs. Over-expression of MEIS1 inhibited the proliferation and migration of PASMCs afforded by hypoxia. In contrast, knockdown of MEIS1 under normoxia condition like hypoxia induced the proliferation and migration of PASMCs. MEIS1 mediated hypoxia-induced the proliferation and migration of PASMCs via METTL14/MEIS1/p21 signaling. SIGNIFICANCE: The present study revealed that MEIS1 regulated the proliferation and migration of PASMCs during hypoxia-induced PH. Thus, MEIS1 may be a potential target for PH therapy.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Proteína Meis1/genética , Miócitos de Músculo Liso/citologia , Artéria Pulmonar/citologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Hipertensão Pulmonar/genética , Hipóxia , Masculino , Músculo Liso Vascular/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/fisiologia
10.
Respir Res ; 21(1): 44, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028950

RESUMO

OBJECTIVE: To investigate the differences in the proportions of BMPR2 mutations in familial hereditary pulmonary arterial hypertension (HPAH) and idiopathic pulmonary arterial hypertension (IPAH) between males and females and the relationship between BMPR2 mutation and PAH severity. METHODS: A computer was used to search the electronic Cochrane Library, PubMed/MEDLINE, and EMBASE databases for clinical trials containing information on the relationship between PAH prognosis and BMPR2 mutations through March 2019. After obtaining the data, a meta-analysis was performed using Review Manager Version 5.3 and Stata. RESULTS: A meta-analysis was performed on 17 clinical trials (2198 total patients: 644 male, 1554 female). The results showed that among patients with HPAH and IPAH, the BMPR2 mutation rate is higher in male than in female patients [male group (224/644, 34.78%), female group (457/1554, 29.41%), OR = 1.30, 95% CI: 1.06~1.60, P = 0.01, I2 = 10%]. Furthermore, haemodynamic and functional parameters were more severe in IPAH and HPAH patients with BMPR2 mutations than in those without, and those with BMPR2 mutation were diagnosed at a younger age. The risk of death or transplantation was higher in PAH patients with BMPR2 mutations than in those without (OR = 2.51, 95% CI: 1.29~3.57, P = 0.003, I2 = 24%). Furthermore, the difference was significant only in male patients (OR = 5.58, 95% CI: 2.16~14.39, P = 0.0004, I2 = 0%) and not in female patients (OR = 1.41, 95% CI: 0.75~2.67, P = 0.29, I2 = 0%). CONCLUSION: Among patients with HPAH and IPAH, men are more likely to have BMPR2 mutations, which may predict more severe PAH indications and prognosis.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Mutação/genética , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Caracteres Sexuais , Ensaios Clínicos como Assunto/métodos , Feminino , Humanos , Masculino
11.
Eur J Pharmacol ; 864: 172698, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563647

RESUMO

It has well been demonstrated that E3 ubiquitin ligase cullin7 plays important roles in cancer cell growth control via down-regulating p53 expression. The noncanonical function or the pathogenic role of p53 has more recently been implicated in pulmonary vascular remodeling. Therefore, whether cullin7 participates in hypoxia-induced pulmonary vascular remodeling deserves to be elucidated. The present study found that hypoxia up-regulated the expression of cullin7 mRNA and protein in pulmonary arteries and pulmonary artery smooth muscle cells, and knockdown of cullin7 inhibited hypoxia-induced proliferation and migration of pulmonary artery smooth muscle cells and reversed hypoxia-induced inhibition of p53 expression. Notably, administration of proteasome inhibitor MG132 significantly inhibited the expression of cullin7 and up-regulated the expression of p53 in pulmonary arteries concomitantly with improvement of hypoxia-induced pulmonary vascular remodeling. Our study demonstrated that hypoxia induced up-regulation of cullin7 expression resulting to the proliferation and migration of pulmonary artery smooth muscle cells via down-regulating p53 expression, which contributed to pulmonary vascular remodeling.


Assuntos
Movimento Celular , Proteínas Culina/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Regulação para Cima , Animais , Proliferação de Células , Proteínas Culina/genética , Técnicas de Silenciamento de Genes , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Leupeptinas/farmacologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos
12.
Eur J Pharmacol ; 863: 172673, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542480

RESUMO

Pulmonary arterial remodeling is a crucial cause of increased pulmonary artery pressure during pulmonary hypertension (PH). Recently, growing evidence has upheld the contribution of endothelial-mesenchymal transition (EndMT) to pulmonary arterial remodeling, but the underlying mechanisms remain largely unaddressed. miR-204 has been implicated in PH, being anti-proliferative and pro-apoptotic in pulmonary artery smooth muscles cells (PASMCs), but its role in EndMT is still unknown. Here we found that miR-204 was down-regulated by hypoxia in rat pulmonary arterial intima and human pulmonary artery endothelial cells (HPAECs), and its further down-regulation by using miR-204 inhibitor suppressed hypoxia-induced EndMT. Moreover, autophagy, evoked by hypoxia in rat pulmonary arterial intima and HPAECs, suppressed hypoxia-induced EndMT via p62-dependent degradation of Snail and Twist. Additionally, autophagy was regulated by miR-204 targeting ATG7. While down-regulation of miR-204 in PASMCs reportedly promoted monocrotaline-induced pulmonary arterial hypertension via increased cell proliferation, our data suggested an important, albeit dichotomous, role of miR-204 down-regulation in endothelial cells in the process of EndMT that it attenuated EndMT by enhancing autophagy, thereby ameliorating hypoxia-induced PH to some extent.


Assuntos
Autofagia/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Hipóxia Celular/genética , Linhagem Celular , Humanos , Masculino , Proteólise , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição da Família Snail/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
13.
Life Sci ; 227: 64-73, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004656

RESUMO

AIM: Growing evidence suggests that endothelial-mesenchymal transition (EndMT) play key roles in pulmonary arterial remodeling during pulmonary arterial hypertension (PAH), but the underlying mechanisms have yet to be fully understood. miR-27a has been shown to promote proliferation of pulmonary arterial cells during PAH, but its role in EndMT remains unexplored. This study was designed to investigate the role and underlying mechanism of miR-27a in EndMT during PAH. MAIN METHODS: Rats were exposed in hypoxia (10% O2) for 3 weeks to induce PAH, and human pulmonary artery endothelial cells (HPAECs) were exposed in hypoxia (1% O2) for 48 h to induce EndMT. Immunohistochemistry, in situ hybridization, immunofluorescence, real-time PCR and Western blot were conducted to detect the expressions of RNAs and proteins, and luciferase assay was used to verify the putative binding site of miR-27a. KEY FINDINGS: We found that hypoxia up-regulated miR-27a in the tunica intima of rat pulmonary arteries and HPAECs, and that inhibition of miR-27a suppressed hypoxia-induced EndMT. Furthermore, elevated expression of miR-27a suppressed bone morphogenetic protein (BMP) signaling by targeting Smad5, thereby lessening Id2-mediated repression of the 2 critical mediators of EndMT (Snail and Twist). SIGNIFICANCE: Our data unveiled a novel role of miR-27a in EndMT during hypoxia-induced PAH. Thus, targeting of miR-27a-related pathway may be therapeutically harnessed to treat PAH.


Assuntos
Transição Epitelial-Mesenquimal/genética , Hipertensão Pulmonar/genética , MicroRNAs/fisiologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Endoteliais/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima , Remodelação Vascular/genética
14.
Eur J Pharmacol ; 818: 84-95, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29069578

RESUMO

In pulmonary hypertension (PH), pulmonary arterial smooth muscle cells (PASMCs) are dedifferentiated, undergoing a contractile-to-synthetic phenotypic switching. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays diverse roles in the cardiovascular system, but its contribution to PH remains to be fully defined. The present study was undertaken to explore the role of LOX-1 in PASMCs dedifferentiation in hypoxia-induced pulmonary vascular remodeling and PH. In a rat model of hypoxic PH, pulmonary vascular remodeling was accompanied by increased expression of LOX-1 in pulmonary arteries. In primary rat PASMCs, hypoxia-induced PASMCs dedifferentiation occurred concomitantly with LOX-1 upregulation. Inhibition of LOX-1 by either siRNA knockdown or neutralizing antibody significantly ameliorated PASMCs dedifferentiation. Mechanistically, LOX-1 promotes PASMCs dedifferentiation under hypoxic conditions via ERK1/2-Elk-1/MRTF-A/SRF signaling pathway. In conclusion, our data uncovers an important role of LOX-1 in the maintenance of PASMCs phenotype. Therapeutic targeting of LOX-1/ERK1/2-Elk-1/MRTF-A/SRF signaling axis would be exploited to treat hypoxic PH.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Artéria Pulmonar/patologia , Receptores Depuradores Classe E/metabolismo , Animais , Desdiferenciação Celular , Hipóxia Celular , Proliferação de Células , Canais de Potássio Éter-A-Go-Go/metabolismo , Hipertensão Pulmonar/fisiopatologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
16.
Eur J Pharmacol ; 809: 42-51, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28478070

RESUMO

Pulmonary hypertension (PH) mainly results from excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and displays mitochondrial abnormalities such as mitochondrial fragmentation. Epigallocatechin-3-gallate (EGCG), an efficient antiproliferative compound in green tea, has recently been demonstrated to inhibit PASMCs proliferation. However, the pre-clinical issues as to whether EGCG attenuates PH and the underlying mechanisms have yet to be addressed. The present study was undertaken to investigate the therapeutic effects of EGCG on PH and its effects on mitochondrial fragmentation in PASMCs. Rats exposed to hypoxia (10% O2, 3 weeks) developed PH. EGCG (50, 100 or 200mg/kg/d, i.g.) dose-dependently attenuated right ventricular systolic pressure, pulmonary vascular remodeling and right ventricular hypertrophy, increased expression of mitochondrial fusion protein - mitofusin-2 (MFN-2), and promoted mitochondrial fusion as evidenced by decreased number and volume of mitochondria in PASMCs of pulmonary arteries. Notably, EGCG (50µM) downregulated hypoxia-induced (3% O2, 48h) PASMCs mitochondrial fragmentation and inhibited PASMCs proliferation via KLF-4/MFN-2/p-Erk signaling pathway. Collectively, our data demonstrated that EGCG exerts antiproliferative effects via regulating mitochondrial fragmentation of PASMCs and EGCG holds the promise as a drug against PH.


Assuntos
Catequina/análogos & derivados , Hipóxia/patologia , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Remodelação Vascular/efeitos dos fármacos , Animais , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , GTP Fosfo-Hidrolases , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 488(4): 655-663, 2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28108289

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a proliferative disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMCs). Our lately study demonstrated that let-7g inhibited hypoxia-induced proliferation of PASMCs via repressing c-myc-Bmi-1-p16 signaling pathway. However, the upstream of let-7g has not yet been fully defined. Previous studies have shown that LOX-1, a target of let-7g, could also regulate the expression of let-7g in human aortic endothelial cells. In this present study, we aimed to investigate whether there is a negative feedback regulation between microRNA let-7g and LOX-1 in hypoxia-induced proliferation of PASMCs. METHODS: SD Rats were exposed to hypoxia (10% O2, 3 weeks) to induce PH. HE staining was used to evaluate pulmonary artery remodeling. in situ hybridization and immunohistochemistry were performed to assess the expression and distribution of let-7g and LOX-1, respectively. MTS, EDU and flow cytometry were performed to evaluate PASMCs proliferation. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were conducted to assess the expression of let-7g, LOX-1, calpain-1,-2,-4, and OCT-1. RESULTS: The expression of let-7g was significantly down-regulated in pulmonary arteries of hypoxia-induced PH rats accompanied by pulmonary vascular remodeling, whereas let-7g mimic inhibited hypoxia-induced proliferation of PASMCs and up-regulation of LOX-1 expression. LOX-1 blocking reversed hypoxia-induced down-regulation of let-7g expression. Calpains, protein kinase C and OCT-1 were involved in negative feedback regulation between let-7g and LOX-1. CONCLUSION: Negative feedback regulation between let-7g and LOX-1 mediated hypoxia-induced proliferation of in PASMCs.


Assuntos
Retroalimentação Fisiológica , Hipóxia , MicroRNAs/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/citologia , Receptores Depuradores Classe E/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Receptores Depuradores Classe E/genética
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(9): 929-36, 2016 Sep 28.
Artigo em Chinês | MEDLINE | ID: mdl-27640791

RESUMO

OBJECTIVE: To explore the role of calpain in pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension and the underlying mechanisms.
 METHODS: Sprague-Dawley rats were randomly divided into the hypoxia group and the normoxia control group. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored by a method with right external jugular vein cannula. Right ventricular hypertrophy index was presented as the ratio of right ventricular weight to left ventricular weight (left ventricle plus septum weight). Levels of calpain-1, -2 and -4 mRNA in pulmonary artery were determined by real-time PCR. Levels of calpain-1, -2 and -4 protein were determined by Western blot. Primary rat pulmonary arterial smooth muscle cells (PASMCs) were divided into 4 groups: a normoxia control group, a normoxia+MDL28170 group, a hypoxia group and a hypoxia+MDL28170 group. Cell proliferation was detected by MTS and flow cytometry. Levels of Ki-67 and proliferating cell nuclear antigen (PCNA) mRNA were determined by real-time PCR.
 RESULTS: RVSP, mPAP and right ventricular remodeling index were significantly elevated in the hypoxia group compared to those in the normoxia group. In the hypoxia group, pulmonary vascular remodeling was significantly developed, accompanied by up-regulation of calpain-1, -2 and -4. MDL28170 significantly inhibited hypoxia-induced proliferation of PASMCs concomitant with the suppression of Ki-67 and PCNA mRNA expression.
 CONCLUSION: Calpain mediates vascular remodeling via promoting proliferation of PASMCs in hypoxia-induced pulmonary hypertension.


Assuntos
Calpaína/fisiologia , Hipertensão Pulmonar/fisiopatologia , Remodelação Vascular/genética , Remodelação Vascular/fisiologia , Animais , Calpaína/genética , Proliferação de Células , Dipeptídeos/fisiologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita , Hipóxia , Antígeno Ki-67/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Antígeno Nuclear de Célula em Proliferação/efeitos dos fármacos , Artéria Pulmonar , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
19.
Anticancer Drugs ; 26(3): 331-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25521557

RESUMO

3ß-O-{α-L-Pyran rhamnose-(1→3)-[ß-D-xylopyranose-(1→2)]-ß-D-glucopyranose-(1→4)-[ß-D-lucopyranose-(1→2)]-α-L-pyran arabinose}-cyclamiretin A (AG4) is a saponin component obtained from the Giantleaf Ardisia Rhizome (Rhizoma Ardisiae Gigantifoliae). The present study aimed to investigate the antitumor potential of AG4 and its possible mechanisms in human nasopharyngeal carcinoma cells (CNE). We exposed tumor cells to AG4 to investigate which cell line was the most sensitive to AG4. Cell viability was assessed using the MTT reduction assay, and the effects of AG4 on apoptosis, reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), and cell cycle were detected using a flow cytometer; the glutathione, superoxide dismutase and malondialdehyde activities were measured using colorimetric methods. The relative expressions of Bax, Bad, Bid, Bcl-2, and Fas mRNA were calculated using the (Equation is included in full-text article.)comparative method by real-time PCR studies and protein was detected by western blotting. AG4 markedly inhibited the growth of CNE cells by decreasing cell proliferation, inducing apoptosis, and blocking the cell cycle in the S phase. The release of caspase-3, caspase-8, and caspase-9 was stimulated by AG4 in CNE, and the decreased proliferation induced by AG4 was blocked by the inhibitor of pan caspase (Z-VAD-FMK). Moreover, the MMP was decreased in AG4-treated cells, and AG4-induced cell apoptosis was accompanied by a rapid and lasting increase in ROS, which was abolished by N-acetyl-L-cysteine (NAC); glutathione, superoxide dismutase, and malondialdehyde were regulated by AG4. AG4 inhibited Bcl-2 mRNA and protein expression and stimulated Bax, Bad, Bid, Fas mRNA, and protein expression in CNE cultures, suggesting an effect at the transcriptional and protein level. In addition, both the FasL inhibitor (AF-016) and the Bcl-2 family inhibitor (GX15-070) could prevent the cell apoptosis induced by AG4. The findings suggested that AG4-induced apoptosis in CNE cells involved a death receptor pathway and a Bcl-2 family-mediated mitochondrial signaling pathway by decreasing the MMPs in an ROS-dependent manner and regulating genes and proteins relative to apoptosis; also, regulation of cell cycles may also play a role in the antitumor mechanism of AG4.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ardisia/química , Neoplasias Nasofaríngeas/tratamento farmacológico , Saponinas/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Carcinoma , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/isolamento & purificação
20.
Inflammation ; 37(1): 277-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24458351

RESUMO

(20S*,24R*)-epoxy-9,19-cyclolanstane-3ß,12ß,16ß,25-pentaol-3-O-ß-D-xylopyranoside (BC1) is a kind of natural bioactive substance extracted from Beesia calthaefolia (Maxim.)Ulbr. This study was designed to evaluate the effects of BC1 on the proliferation of lymphocytes, phagocytosis of peritoneal macrophage, and cytokine secretion, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, and the foot pad thickness index, which is beneficial for understanding the mechanism of BC1 on immunoregulation and anti-inflammation and also will benefit our further research. The proliferation of splenic lymphocyte induced by mitogen (concanavalin A or lipopolysaccharide (LPS)) was detected using the cell counting kit assay. The neutral red phagocytic test of macrophages was determined by colorimetric method. The gene and protein expressions of TNF-α and IL-1ß were measured by real time RT-PCR and ELISA in serum, spleen, and lymphocytes, respectively. In vitro, our present study has shown that BC1 (31.25-250 µg/ml) could inhibit the proliferation of splenic lymphocyte and phagocytosis of macrophages, and inhibit the increased production of TNF-α and IL-1ß in protein and gene levels. In mice, LPS could increase the gene and protein expressions of TNF-α and IL-1ß, respectively, but BC1 (12.5-50 µg/kg) could recover the increased gene and protein expressions of TNF-α and IL-1ß induced by LPS in the spleen and serum of mice. Treatment of arthritic rats with BC1 (1.5 mg/kg body weight) resulted in a significant reduction in foot pad thickness index and serum TNF-α level comparable to the indomethacin-treated arthritic rats, proving its anti-inflammatory effect. Thus, the function of immunoregulation of BC1 may be accomplished through modulating the gene and protein expressions of TNF-α and IL-1ß.


Assuntos
Artrite Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Linfócitos/imunologia , Macrófagos Peritoneais/imunologia , Saponinas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/imunologia , Proliferação de Células/efeitos dos fármacos , Concanavalina A , Feminino , Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Medicina Tradicional Chinesa , Camundongos , Mycobacterium tuberculosis , Fagocitose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ranunculaceae , Ratos , Ratos Wistar , Rizoma/metabolismo , Baço/citologia , Baço/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...