Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soil Tillage Res ; 205: 104754, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33390631

RESUMO

Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.

2.
Sheng Wu Gong Cheng Xue Bao ; 26(7): 974-81, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20954399

RESUMO

In order to explore the feasibility of planting sweet sorghum in sugarcane growing area to prolong milling duration for bioethanol production, 15 varieties were sown monthly from March to September in Liuzhou of Central Guangxi Zhuang Autonomous Region. Yields of fresh stem, grain and leave were documented. The results showed that all varieties grew well when sown from March to August, but could not get mature when sown after late September. The high fresh stem yields were observed for the varieties Sart and PT3-S, 79.28 t/hm2 and 78.58 t/hm2 for single growing season, and 157.95 t/hm2 and 155.25 t/hm2 for two growing seasons. Ripening began from the end of June to late December, making the feed stock available for ethanol production from July to the end of December, even January next year.


Assuntos
Agricultura/métodos , Etanol/metabolismo , Caules de Planta/metabolismo , Saccharum/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , China , Estudos de Viabilidade , Saccharum/metabolismo , Estações do Ano , Sorghum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA