Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
mSystems ; : e0122223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564711

RESUMO

Rapid and accurate sequencing of the entire viral genome, coupled with continuous monitoring of genetic changes, is crucial for understanding the epidemiology of coronaviruses. We designed a novel method called micro target hybrid capture system (MT-Capture) to enable whole-genome sequencing in a timely manner. The novel design of probes used in target binding exhibits a unique and synergistic "hand-in-hand" conjugation effect. The entire hybrid capture process is within 2.5 hours, overcoming the time-consuming and complex operation characteristics of the traditional liquid-phase hybrid capture (T-Capture) system. By designing specific probes for these coronaviruses, MT-Capture effectively enriched isolated strains and 112 clinical samples of coronaviruses with cycle threshold values below 37. Compared to multiplex PCR sequencing, it does not require frequent primer updates and has higher compatibility. MT-Capture is highly sensitive and capable of tracking variants.IMPORTANCEMT-Capture is meticulously designed to enable the efficient acquisition of the target genome of the common human coronavirus. Coronavirus is a kind of virus that people are generally susceptible to and is epidemic and infectious, and it is the virus with the longest genome among known RNA viruses. Therefore, common human coronavirus samples are selected to evaluate the accuracy and sensitivity of MT-Capture. This method utilizes innovative probe designs optimized through probe conjugation techniques, greatly shortening the time and simplifying the handwork compared with traditional hybridization capture processes. Our results demonstrate that MT-Capture surpasses multiplex PCR in terms of sensitivity, exhibiting a thousandfold increase. Moreover, MT-Capture excels in the identification of mutation sites. This method not only is used to target the coronaviruses but also may be used to diagnose other diseases, including various infectious diseases, genetic diseases, or tumors.

2.
Front Microbiol ; 13: 973367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312982

RESUMO

Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy. The combination of the newly launched nanopore sequencing Q20+ kit (LSK112) and flow cell R10.4 is a qualitative improvement over the accuracy of the previous kits. In this study, we firstly used LSK112 kit with flow cell R10.4 to sequence the SARS-CoV-2 whole genome, and summarized the sequencing results of the combination of LSK112 kit and flow cell R10.4 for the 1200bp amplicons of SARS-CoV-2. We found that the proportion of sequences with an accuracy of more than 99% reached 30.1%, and the average sequence accuracy reached 98.34%, while the results of the original combination of LSK109 kit and flow cell R9.4.1 were 0.61% and 96.52%, respectively. The mutation site analysis showed that it was completely consistent with the final consensus sequence of next generation sequencing (NGS). The results showed that the combination of LSK112 kit and flow cell R10.4 allowed rapid whole-genome sequencing of SARS-CoV-2 without the need for verification of NGS.

3.
Virology ; 574: 9-17, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868217

RESUMO

Exosomes participate in intercellular communication by shuttling various small molecules from donor to recipient cells. We aimed to examine the role of exosomes and exosomal miRNAs in influenza virus infection. The results showed that influenza A/H1N1pdm09 infection could promote A549 cells to secrete exosomes, while blocking the generation of exosomes reduced viral RNA production. A total of 97 exosomal miRNAs with significantly altered expression were identified during influenza infection. Of 12 candidate miRNAs chosen for further validation, ten were confirmed by qRT-PCR. Among 5978 predicted target genes,we found 37 interferon pathway-related genes to be the potential targets of 29 differentially expressed miRNAs. Many target genes were annotated to various KEGG signaling pathways, some of which played important roles in influenza infection. These data will help to further understand the mechanism of influenza virus-host interactions, which is important for the development of preventative and therapeutic strategies against influenza virus.


Assuntos
Exossomos , Influenza Humana , MicroRNAs , Células A549 , Exossomos/genética , Exossomos/metabolismo , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Front Microbiol ; 13: 1095739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590420

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2022.973367.].

5.
Front Microbiol ; 12: 732426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733250

RESUMO

Salmonella spp. is one of the most common foodborne disease-causing pathogens that can cause severe diseases in very low infectious doses. Rapid and sensitive detecting Salmonella spp. is advantageous to the control of its spread. In this study, a conserved short fragment of the Salmonella invA gene was selected and used to design primers and specific crRNA (CRISPR RNA) for establishing a one-tube and two-step reaction system for Salmonella spp. detection, by combining recombinase polymerase amplification (RPA) with CRISPR-Cas13a (Clustered Regularly Interspaced Short Palindromic Repeats associated protein 13a) cleavage. The established one-tube RPA-Cas13a method can complete the detection within 20 min and the two-step RPA-Cas13a method detection time within 45 min. The designed primers were highly specific to Salmonella spp. and had no cross-reaction with the other nine diarrheal bacteria. The one-tube RPA-Cas13a could detect the Salmonella genome with the limit of 102 copies, which was the same as real-time polymerase chain reaction (PCR), but less sensitive than two-step RPA-Cas13a (100 copies). The detection results of one-tube or two-step RPA-Cas13a and real-time PCR were highly consistent in clinical samples. One-tube RPA-Cas13a developed in this study provides a simple, rapid, and specific detection method for Salmonella spp. While two-step assay was more sensitive and suitable for samples at low abundance.

6.
J Biomed Res ; 35(3): 216-227, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33963094

RESUMO

The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide, with the pathogenesis mostly unclear. Both virus and host-derived microRNA (miRNA) play essential roles in the pathology of virus infection. This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA. We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets. One of such virus-encoded miRNAs, MR147-3p, was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human, i.e., EXOC7, RAD9A, and TFE3 in the virus-infected cells. The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs. Additionally, the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets, suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution. This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection, indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.

8.
Signal Transduct Target Ther ; 6(1): 165, 2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33895786

RESUMO

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Simulação por Computador , Reposicionamento de Medicamentos , Modelos Biológicos , SARS-CoV-2/metabolismo , Humanos
10.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33219167

RESUMO

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Assuntos
Tratamento Farmacológico da COVID-19 , Quitosana/análogos & derivados , Infecções por Coronavirus/tratamento farmacológico , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/virologia , Quitosana/farmacologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
11.
Virus Res ; 292: 198245, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253716

RESUMO

Enterovirus A71 (EV-A71) emerged as a leading cause of virus derived infant encephalitis in most Asian countries. Some recent studies point out the critical role of microRNA (miRNA) in the regulation of pyroptosis. However, the role of miRNAs in the regulation of EV-A71 infection-induced pyroptosis was not previously explored. In this study, we utilized microRNA array and real-time PCR to verify that miR-195 significantly down-regulate in EV-A71-infected SH-SY5Y human neuroblastoma cells. An inverse correlation of NLRX1 with miR-195 expression in EV-A71-infected SH-SY5Y cells was found. Target prediction of miR-195 showed that NLRX1 could directly interact with miR-195. Results from luciferase reporter assays, qRT-PCR and western blotting demonstrated the negative regulation between miR-195 and NLRX1. Silencing NLRX1 expression with small interfering RNAs (siRNAs-NLRX1) and over-expression of miR-195 also attenuate the EV-A71 associated pyroptosis. Our findings provided evidence showed that miR-195 can regulate EV-A71 infection-induced pyroptosis, by directly targeting NLRX1.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/genética , Infecções por Enterovirus/virologia , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Neuroblastoma/genética , Piroptose , Linhagem Celular Tumoral , Regulação para Baixo , Enterovirus Humano A/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/fisiopatologia , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Proteínas Mitocondriais/genética , Neuroblastoma/metabolismo , Neuroblastoma/virologia
12.
Virology ; 549: 1-4, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32758712

RESUMO

The current outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China firstly. A rapid, highly sensitive, specific, and simple operational method was needed for the detection of SARS-CoV-2. Here, we established a real-time reverse-transcription recombinase-aided amplification assay (RT-RAA) to detect SARS-CoV-2 rapidly. The primers and probe were designed based on the nucleocapsid protein gene (N gene) sequence of SARS-CoV-2. The detection limit was 10 copies per reaction in this assay, which could be conducted within 15 min at a constant temperature (39 °C), without any cross-reactions with other respiratory tract pathogens, such as other coronaviruses. Furthermore, compared with commercial real-time RT-PCR assay, it showed a kappa value of 0.959 (p < 0.001) from 150 clinical specimens. These results indicated that this real-time RT-RAA assay may be a valuable tool for detecting SARS-CoV-2.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Genes Virais , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas do Nucleocapsídeo/genética , Pneumonia Viral/virologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , China/epidemiologia , Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Pandemias , Fosfoproteínas , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , Recombinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , SARS-CoV-2 , Sensibilidade e Especificidade
13.
J Infect Dis ; 222(5): 746-754, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32563194

RESUMO

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated the serum cytokine and chemokine levels in asymptomatic, mild, moderate, severe, and convalescent SARS-CoV-2-infected cases. Proinflammatory cytokine and chemokine production induced by SARS-CoV-2 were observed not only in symptomatic patients but also in asymptomatic cases, and returned to normal after recovery. IL-6, IL-7, IL-10, IL-18, G-CSF, M-CSF, MCP-1, MCP-3, IP-10, MIG, and MIP-1α were found to be associated with the severity of COVID-19. Moreover, a set of cytokine and chemokine profiles were significantly higher in SARS-CoV-2-infected male than female patients. The serum levels of MCP-1, G-CSF, and VEGF were weakly and positively correlated with viral titers. We suggest that combinatorial analysis of serum cytokines and chemokines with clinical classification may contribute to evaluation of the severity of COVID-19 and optimize the therapeutic strategies.


Assuntos
Quimiocinas/sangue , Infecções por Coronavirus/sangue , Citocinas/sangue , Pneumonia Viral/sangue , Adulto , Betacoronavirus/isolamento & purificação , COVID-19 , Quimiocina CCL2/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Fator Estimulador de Colônias de Granulócitos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença , Fator A de Crescimento do Endotélio Vascular/sangue , Carga Viral
14.
Virus Res ; 285: 198005, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32408156

RESUMO

Accumulating evidence shows that microbial co-infection increases the risk of disease severity in humans. There have been few studies about SARS-CoV-2 co-infection with other pathogens. In this retrospective study, 257 laboratory-confirmed COVID-19 patients in Jiangsu Province were enrolled from January 22 to February 2, 2020. They were re-confirmed by real-time RT-PCR and tested for 39 respiratory pathogens. In total, 24 respiratory pathogens were found among the patients, and 242 (94.2 %) patients were co-infected with one or more pathogens. Bacterial co-infections were dominant in all COVID-19 patients, Streptococcus pneumoniae was the most common, followed by Klebsiella pneumoniae and Haemophilus influenzae. The highest and lowest rates of co-infections were found in patients aged 15-44 and below 15, respectively. Most co-infections occurred within 1-4 days of onset of COVID-19 disease. In addition, the proportion of viral co-infections, fungal co-infections and bacterial-fungal co-infections were the highest severe COVID-19 cases. These results will provide a helpful reference for diagnosis and clinical treatment of COVID-19 patients.


Assuntos
Infecções Bacterianas/complicações , Betacoronavirus , Coinfecção , Infecções por Coronavirus/complicações , Micoses/complicações , Pneumonia Viral/complicações , Viroses/complicações , Adolescente , Adulto , Fatores Etários , Idoso , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Fatores de Tempo , Adulto Jovem
15.
Virology ; 546: 122-126, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452410

RESUMO

Since SARS-CoV-2 spreads rapidly around the world, data have been needed on the natural fluctuation of viral load and clinical indicators associated with it. We measured and compared viral loads of SARS-CoV-2 from pharyngeal swab, IgM anti-SARS-CoV-2, CRP and SAA from serum of 114 COVID-19 patients on admission. Positive rates of IgM anti-SARS-CoV-2, CRP and SAA were 80.7%, 36% and 75.4% respectively. Among IgM-positive patients, viral loads showed different trends among cases with different severity, While viral loads of IgM-negative patients tended to increase along with the time after onset. As the worsening of severity, the positive rates of CRP and SAA also showed trends of increase. Different CRP/SAA type showed associations with viral loads in patients in different severity and different time after onset. Combination of the IgM and CRP/SAA with time after onset and severity may give suggestions on the viral load and condition judgment of COVID-19 patients.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/diagnóstico , Imunoglobulina M/sangue , Pneumonia Viral/diagnóstico , Carga Viral , Adolescente , Adulto , Idoso , Betacoronavirus , Biomarcadores/sangue , Proteína C-Reativa/análise , COVID-19 , Criança , Infecções por Coronavirus/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Faringe/virologia , Pneumonia Viral/sangue , SARS-CoV-2 , Proteína Amiloide A Sérica/análise , Adulto Jovem
16.
Virology ; 536: 58-67, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400550

RESUMO

Human infection with H7N9 virus has provoked global public health concern due to the substantial morbidity and mortality. Neuraminidase inhibitors (NAIs) are used as first-line drugs to treat the infection. However, virus quasispecies can evolve rapidly under drug pressure, which may alter various biological characteristics of virus. Using an in vitro evolution platform and next-generation sequencing, we found the presence of peramivir led to changes to the dominant populations of the virus. Two important amino acid substitutions were identified in NA, I222T and H274Y, which caused reduced susceptibilities to oseltamivir or both oseltamivir and peramivir as confirmed by enzyme- and cell-based assays. The NA-H274Y variant showed decreased replicative fitness at the early stage of infection accompanied with impaired NA function. The quasispecies evolution of H7N9 virus and the potential emergence of these two variants should be closely monitored, which may guide the adjustment of antiviral strategies.


Assuntos
Antivirais/farmacologia , Ciclopentanos/farmacologia , Farmacorresistência Viral/genética , Guanidinas/farmacologia , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Neuraminidase/genética , Proteínas Virais/genética , Ácidos Carbocíclicos , Substituição de Aminoácidos , Animais , Cães , Evolução Molecular , Expressão Gênica , Humanos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Neuraminidase/metabolismo , Oseltamivir/farmacologia , Carga Viral/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
BMC Microbiol ; 19(1): 8, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621594

RESUMO

BACKGROUND: As an important component of the causative agent of respiratory tract infections, enteric and eye infections, Human mastadenoviruses (HAdVs) species B spread easily in the crowd. In this study, we developed a recombinase polymerase amplification (RPA) assay for rapidly detecting HAdVs species B which was comprised of two different formats (real-time and lateral-flow device). RESULTS: This assay was confirmed to be able to detect 5 different HAdVs species B subtypes (HAdV-B3, HAdV-B7, HAdV-B11, HAdV-B14 and HAdV-B55) without cross-reactions with other subtypes and other respiratory tract pathogens. This RPA assay has not only highly sensitivity with low detection limit of 50 copies per reaction but also short reaction time (< 15 min per detection). Furthermore, the real-time RPA assay has excellent correlation with real-time PCR assay for detection of HAdVs species B presented in clinical samples. CONCLUSIONS: Thus, the RPA assay developed in this study provides an effective and portable approach for the rapid detection of HAdVs species B.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Mastadenovirus/classificação , Mastadenovirus/genética , Tipagem Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/normas , Recombinases/metabolismo , Virologia/métodos , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase/normas , Reprodutibilidade dos Testes
18.
Virology ; 521: 69-76, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29886343

RESUMO

Enterovirus A71 (EV-A71) infection can cause hand, foot and mouth disease (HFMD), and even fatal meningoencephalitis. Unfortunately, there is currently no effective treatment for EV-A71 infection due to the lack of understanding of the mechanism of neurological diseases. In this study, we employed SH-SY5Y human neuroblastoma cells to explore the roles of caspase-1 in neuropathogenesis. The expression and activity of caspase-1 were analyzed. The potential immuneconsequences mediated by caspase-1 including cell death, lysis, DNA degradation, and secretion of pro-inflammatory were also examined. We found the gene expression levels of caspase-1, IL-1ß, IL-18 and active caspase-1 were markedly increased in the SH-SY5Y cells at 48 h post EV-A71 infection. The cell death, lysis, and DNA degradation were also increased during infection, which could be significantly alleviated by caspase-1 inhibition. These observations provided additional experimental evidence supporting caspase-1-mediated pyroptosis as a novel pathway of inflammatory programmed cell death.


Assuntos
Caspase 1/metabolismo , Enterovirus Humano A/patogenicidade , Doença de Mão, Pé e Boca/patologia , Piroptose , Células Cultivadas , Fragmentação do DNA , Humanos , Inflamação , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neuroblastoma/patologia , Neuroblastoma/virologia , Replicação Viral
19.
Sci Bull (Beijing) ; 63(16): 1043-1050, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32288966

RESUMO

Human infections with influenza H7 subtypes, such as H7N9, have raised concerns worldwide. Here, we report a human infection with a novel influenza A(H7N4) virus. A 68 years-old woman with cardiovascular and cholecystic comorbidities developed rapidly progressed pneumonia with influenza-like-illness as initial symptom, recovered after 23 days-hospitalization including 8 days in ICU. Laboratory indicators for liver and blood coagulation dysfunction were observed. Oseltamivir phosphate, glucocorticoids and antibiotics were jointly implemented, with nasal catheterization of oxygen inhalation for this patient. We obtained the medical records and collected serial respiratory and blood specimens from her. We collected throat, cloacal and/or feces samples of poultry and wild birds from the patient's backyard, neighborhood, local live poultry markets (LPMs) and the nearest lake. All close contacts of the patient were followed up and sampled with throat swabs and sera. Influenza viruses and other respiratory pathogens were tested by real-time RT-PCR, viral culturing and/or sequencing for human respiratory and bird samples. Micro-neutralizing assay was performed for sera. A novel reassortant wild bird-origin H7N4 virus is identified from the patient and her backyard poultry (chickens and ducks) by sequencing, which is distinct from previously-reported avian H7N4 and H7N9 viruses. At least four folds increase of neutralizing antibodies to H7N4 was detected in her convalescent sera. No samples from close contacts, wild birds or other poultry were tested positive for H7N4 by real-time RT-PCR.

20.
Arch Virol ; 162(11): 3305-3312, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28707271

RESUMO

Metagenomic analysis through high-throughput sequencing is a tool for detecting both known and novel viruses. Using this technique, a novel circular single-stranded DNA (ssDNA) virus genome was discovered in respiratory secretions from a febrile traveler. The virus, named human respiratory-associated PSCV-5-like virus (HRAPLV), has a genome comprising 3,018 bases, with two major putative ORFs inversely encoding capsid (Cap) and replicase (Rep) protein and separated by two intergenic regions. One stem-loop structure was predicted in the larger intergenic region (LIR). The predicted amino acid sequences of the Cap and Rep proteins of HRAPLV showed highest identity to those of porcine stool-associated circular virus 5 isolate CP3 (PoSCV 5) (53.0% and 48.9%, respectively). The host tropism of the virus is unknown, and further study is warranted to determine whether this novel virus is associated with human disease.


Assuntos
Circovirus/genética , Circovirus/isolamento & purificação , DNA Circular/genética , DNA de Cadeia Simples/genética , DNA Viral/genética , Faringe/virologia , Genoma Viral , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...