Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 282: 131110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470162

RESUMO

Fibrous activated carbon has attracted emerging research interests due to its remarkable adsorption performance for volatile organic compounds (VOCs). Though this adsorption behavior for VOCs is closely related to the pore structure on the surface of activated carbon fiber (ACF), few researchers paid attentions to the influence of textural properties of this adsorption process. Especially, cotton-based activated carbon fiber (CACF) for adsorbing benzene pollutant is rarely reported. Herein, in order to develop a high-performance adsorbent for the removal of VOCs pollutants, this work studied the influence of textural properties of CACF on the adsorption of benzene. The results showed that the increase of carbonization temperature would lead to the reduction of mesopores but the increase of micropores for CACF; the embedment of phosphoric acid and its derivatives into the carbon layers contributed to the formation of pore structure for CACF; furthermore, specific surface area of CACF can also be enlarged by increasing the concentration of phosphoric acid. More importantly, it was found that the adsorption capacity of CACF for benzene was strongly dependent on the specific surface area and volume of micropores within CACF because micropores can provide more favorable binding sites. This adsorption process preferred to occur on the wall of micropores, then the accumulated benzene would slowly fill the pores. Interestingly, the decrease of pore size of micropores can unexpectedly improve the affinity of CACF to benzene on the contrary. This work provides a new strategy to develop porous structured ACF materials for the high-performance adsorption of VOCs.


Assuntos
Benzeno , Carvão Vegetal , Adsorção , Fibra de Carbono , Porosidade
2.
Front Chem ; 7: 338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139621

RESUMO

A large-area MnO2 stalagmite nanorod arrays (SNAs) growing vertically on flexible substrates were successfully fabricated by an easy heat-electrodeposition method. The large specific capacitance (646.4 F g-1 at 500 mA g-1) and excellent rate capability (42.3% retention with 40 times of increase) indicate that the prepared MnO2 SNAs flexible electrode has outstanding electrochemical performance. Furthermore, after 5,000 repetitions of CV tests, the overall specific capacitance could retain ~101.2% compared with the initial value meant a long cycling life. These outstanding properties could be ascribed to the effective conductive transport path between Ni substrate and MnO2 nanorods, and owing to the stalagmite like structure of MnO2 nanorods, the exposed sufficient active sites are beneficial to the electrolyte infiltration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...