Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 256: 111594, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37730126

RESUMO

With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.


Assuntos
Anti-Helmínticos , Nematoides , Animais , Humanos , Caenorhabditis elegans , Ensaios de Triagem em Larga Escala , Anti-Helmínticos/farmacologia , Ásia Meridional
2.
Parasit Vectors ; 16(1): 247, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480077

RESUMO

BACKGROUND: Since the advent of ivermectin (along with melarsomine and doxycycline), heartworm has come to be viewed as a solved problem in veterinary medicine, diminishing investment into non-clinical research on Dirofilaria immitis. However, heartworm infections continue to pose problems for practitioners and their patients and seem to be increasing in frequency and geographic distribution. Resistance to preventative therapies (macrocyclic lactones) complicates the picture. The use of chemotherapy for other kinds of pathogens has benefitted enormously from research into the basic biology of the pathogen and on the host-pathogen interface. A lack of basic information on heartworms as parasites and how they interact with permissive and non-permissive hosts greatly limits the ability to discover new ways to prevent and treat heartworm disease. Recent advances in technical platforms will help overcome the intrinsic barriers that hamper research on D. immitis, most notably, the need for experimentally infected dogs to maintain the life cycle and provide material for experiments. Impressive achievements in the development of laboratory animal models for D. immitis will enhance efforts to discover new drugs for prevention or treatment, to characterize new diagnostic biomarkers and to identify key parasite-derived molecules that are essential for survival in permissive hosts, providing a rational basis for vaccine discovery. A 'genomics toolbox' for D. immitis could enable unprecedented insight into the negotiations between host and parasite that enable survival in a permissive host. The more we know about the pathogen and how it manipulates its host, the better able we will be to protect companion animals far into the future.


Assuntos
Dirofilaria immitis , Dirofilariose , Doenças do Cão , Humanos , Animais , Cães , Dirofilaria immitis/genética , Doenças do Cão/parasitologia , Dirofilariose/tratamento farmacológico , Ivermectina/uso terapêutico , Lactonas/uso terapêutico
3.
Pathogens ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35456101

RESUMO

Parasitic helminths resort to various mechanisms to evade and modulate their host's immune response, several of which have been described for Schistosoma mansoni. We recently reported the presence of sialic acid residues on the surface of adult S. mansoni extracellular vesicles (EVs). We now report that these sialylated molecules are mammalian serum proteins. In addition, our data suggest that most sialylated EV-associated proteins do not elicit a humoral response upon injection into mice, or in sera obtained from infected animals. Sialic acids frequently terminate glycans on the surface of vertebrate cells, where they serve important functions in physiological processes such as cell adhesion and signalling. Interestingly, several pathogens have evolved ways to mimic or utilise host sialic acid beneficially by coating their own proteins, thereby facilitating cell invasion and providing protection from host immune effectors. Together, our results indicate that S. mansoni EVs are coated with host glycoproteins, which may contribute to immune evasion by masking antigenic sites, protecting EVs from removal from serum and aiding in cell adhesion and entry to exert their functions.

4.
Biotechnol Adv ; 57: 107937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271946

RESUMO

Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Descoberta de Drogas , Resistência a Medicamentos , Ensaios de Triagem em Larga Escala/métodos
5.
Am J Trop Med Hyg ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226875

RESUMO

Dracunculus medinensis (Guinea worm [GW]), a zoonotic nematode targeted for eradication, has been managed using interventions aimed at humans; however, increases in domestic dog GW infections highlight the need for novel approaches. We conducted two clinical trials evaluating the efficacy of subcutaneously injected flubendazole (FBZ) as a treatment of GW infection. The first trial was conducted administering FBZ to experimentally infected ferrets; the second trial involved administering FBZ or a placebo to domestic dogs in the Republic of Tchad (Chad). We found contrasting results between the two trials. When adult gravid female GW were recovered from ferrets treated with FBZ, larvae presented in poor condition, with low to no motility, and an inability to infect copepods. Histopathology results indicated a disruption to morulae development within uteri of worms from treated animals. Results from the trial in Chadian dogs failed to indicate significant treatment of or prevention against GW infection. However, the difference in treatment intervals (1 month for ferrets and 6 months for dogs) or the timing of treatment (ferrets were treated later in the GW life-cycle than dogs) could explain different responses to the subcutaneous FBZ injections. Both trials provided valuable data guiding the use of FBZ in future trials (such as decreasing treatment intervals or increasing the dose of FBZ in dogs to increase exposure), and highlighted important lessons learned during the implementation of a field-based, double-blinded randomized control trial in Chadian dogs.

6.
Biomed Pharmacother ; 145: 112380, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749053

RESUMO

BACKGROUND AND PURPOSE: Nematode glutamate-gated chloride channels (GluCls) are targets of ivermectin (IVM) and moxidectin (MOX), structurally dissimilar macrocyclic lactone (ML) anthelmintics. IVM and MOX possess different pharmacokinetics and efficacy profiles but are thought to have the same binding site, through which they allosterically activate GluCls, apart from the GLC-2 receptor, which is antagonized by IVM. Our goal was to determine GLC-2 sensitivity to MOX, investigate residues involved in antagonism of GLC-2, and to identify differences in receptor-level pharmacology between IVM and MOX. EXPERIMENTAL APPROACH: Two-electrode voltage clamp electrophysiology was used to study the pharmacology of Caenorhabditis elegans GLC-2 receptors heterologously expressed in Xenopus laevis oocytes. In silico homology modeling identified Cel-GLC-2 residues Met291 and Gln292 at the IVM binding site that differ from other GluCls; we mutated these residues to those found in ML-sensitive GluCls, and those of filarial nematode GLC-2. KEY RESULTS: We discovered that MOX inhibits wild-type C. elegans GLC-2 receptors roughly 10-fold more potently than IVM, and with greater maximal inhibition of glutamate activation (MOX = 86.9 ± 2.5%; IVM = 57.8 ± 5.9%). IVM was converted into an agonist in the Met291Gln mutant, but MOX remained an antagonist. Glutamate responses were abrogated in a Met291Leu Gln292Thr double mutant (mimicking filarial nematode GLC-2), but MOX and IVM were converted into positive allosteric modulators of glutamate at this construct. CONCLUSIONS AND IMPLICATIONS: Our data provides new insights into differences in receptor-level pharmacology between IVM and MOX and identify residues responsible for ML antagonism of GLC-2.


Assuntos
Anti-Helmínticos/farmacologia , Canais de Cloreto/antagonistas & inibidores , Ivermectina/farmacologia , Macrolídeos/farmacologia , Animais , Sítios de Ligação , Caenorhabditis elegans , Feminino , Oócitos , Técnicas de Patch-Clamp , Xenopus laevis
7.
Pathogens ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832557

RESUMO

Parasitic helminths are master manipulators of host immunity. Their strategy is complex and involves the release of excreted/secreted products, including extracellular vesicles (EVs). The protein and miRNA contents of EVs have been characterised for many parasitic helminths but, despite reports suggesting the importance of EV surface carbohydrate structures (glycans) in the interactions with target cells and thus subsequent effector functions, little is known about parasite EV glycomics. Using lectin microarrays, we identified several lectins that exhibit strong adhesion to Schistosoma mansoni EVs, suggesting the presence of multiple glycan structures on these vesicles. Interestingly, SNA-I, a lectin that recognises structures with terminal sialic acid, displayed strong affinity for S. mansoni EVs, which was completely abolished by neuraminidase treatment, suggesting sialylation in the EV sample. This finding is of interest, as sialic acids play important roles in the context of infection by aiding immune evasion, affecting target recognition, cell entry, etc., but are not thought to be synthesised by helminths. These data were validated by quantitative analysis of free sialic acid released from EVs following treatment with neuraminidase. Lectin histochemistry and fluorescence in situ hybridisation analyses on whole adult worms suggest the involvement of sub-tegumental cell bodies, as well as the digestive and excretory systems, in the release of EVs. These results support previous reports of EV biogenesis diversity in trematodes and potentially highlight new means of immune modulation and evasion employed by schistosomes.

8.
PLoS Negl Trop Dis ; 15(9): e0009828, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587193

RESUMO

Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals and plants. Despite great differences in their life cycles, host preference and transmission modes, these parasites share a common capacity to manipulate their host's immune system. This is at least partly achieved through the release of excretory/secretory proteins, the most well-characterized component of nematode secretomes, that are comprised of functionally diverse molecules. In this work, we analyzed published protein secretomes of parasitic nematodes to identify common patterns as well as species-specific traits. The 20 selected organisms span 4 nematode clades, including plant pathogens, animal parasites, and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the only component common to all adult secretomes; many other protein classes overlapped across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all parasitic species, but missing from C. elegans. Secretomes from larval stages showed less overlap between species. Although comparison of secretome composition across species and life-cycle stages is challenged by the use of different methods and depths of sequencing among studies, our workflow enabled the identification of conserved protein families and pinpointed elements that may have evolved as to enable parasitism. This strategy, extended to more secretomes, may be exploited to prioritize therapeutic targets in the future.


Assuntos
Proteínas de Helminto/metabolismo , Especificidade de Hospedeiro , Nematoides/fisiologia , Secretoma/metabolismo , Animais , Caenorhabditis elegans , Feminino , Proteínas de Helminto/classificação , Humanos , Estágios do Ciclo de Vida , Masculino , Filogenia , Especificidade da Espécie
9.
Trends Parasitol ; 37(6): 468-475, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33563557

RESUMO

Helminth secretomes comprise many potential immunomodulators. The molecular and functional diversity of these entities and their importance at the host-parasite interface have been increasingly recognized. It is now common to hypothesize that parasite-derived molecules (PDMs) are essential mediators used by parasites to establish and remain in their hosts. Suppression of PDM release has been reported for two anthelmintic drug classes, the benzimidazoles and macrocyclic lactones, the mechanisms of action of which remain incompletely resolved. We propose that bringing together recent insights from different streams of parasitology research, for example, immunoparasitology and pharmacology, will stimulate the development of new ways to alter the host-parasite interface in the search for novel anthelmintic strategies.


Assuntos
Anti-Helmínticos/uso terapêutico , Helmintíase/tratamento farmacológico , Interações Hospedeiro-Parasita , Animais , Anti-Helmínticos/farmacologia , Helmintíase/fisiopatologia , Helmintos/efeitos dos fármacos
10.
Front Mol Neurosci ; 13: 601102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324163

RESUMO

Effective control of hookworm infections in humans and animals relies on using a small group of anthelmintics. Many of these drugs target cholinergic ligand-gated ion channels, yet the direct activity of anthelmintics has only been studied in a subset of these receptors, primarily in the non-parasitic nematode, Caenorhabditis elegans. Here we report the characterization of a homopentameric ionotropic acetylcholine receptor (AChR), ACR-16, from Necator americanus and Ancylostoma ceylanicum, the first known characterization of human hookworm ion channels. We used two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes to determine the pharmacodynamics of cholinergics and anthelmintics on ACR-16 from both species of hookworm. The A. ceylanicum receptor (Ace-ACR-16) was more sensitive to acetylcholine (EC50 = 20.64 ± 0.32 µM) and nicotine (EC50 = 24.37 ± 2.89 µM) than the N. americanus receptor (Nam-ACR-16) (acetylcholine EC50 = 170.1 ± 19.23 µM; nicotine EC50 = 597.9 ± 59.12 µM), at which nicotine was a weak partial agonist (% maximal acetylcholine response = 30.4 ± 7.4%). Both receptors were inhibited by 500 µM levamisole (Ace-ACR-16 = 65.1 ± 14.3% inhibition, Nam-ACR-16 = 79.5 ± 7.7% inhibition), and responded to pyrantel, but only Ace-ACR-16 responded to oxantel. We used in silico homology modeling to investigate potential structural differences that account for the differences in agonist binding and identified a loop E isoleucine 130 of Nam-ACR-16 as possibly playing a role in oxantel insensitivity. These data indicate that key functional differences exist among ACR-16 receptors from closely related species and suggest mechanisms for differential drug sensitivity.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32531750

RESUMO

Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 µM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/farmacologia , Animais , Reposicionamento de Medicamentos , Humanos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Esquistossomicidas/química
12.
Trends Parasitol ; 36(7): 573-575, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387059

RESUMO

Diseases caused by helminth infections affect more than a quarter of the population of the world, but the therapeutic arsenal is limited. The approval of moxidectin in 2018 and triclabendazole in 2019 by the FDA marked an important moment in the fight against diseases of poverty, such as helminthiases.


Assuntos
Aprovação de Drogas , Helmintíase/tratamento farmacológico , Macrolídeos/uso terapêutico , Triclabendazol/uso terapêutico , Animais , Anti-Helmínticos/uso terapêutico , Humanos , Estados Unidos , United States Food and Drug Administration
13.
Artigo em Inglês | MEDLINE | ID: mdl-31229910

RESUMO

Macrocyclic lactone (ML) anthelmintics are the most important class of anthelmintics because of our high dependence on them for the control of nematode parasites and some ectoparasites in livestock, companion animals and in humans. However, resistance to MLs is of increasing concern. Resistance is commonplace throughout the world in nematode parasites of small ruminants and is of increasing concern in horses, cattle, dogs and other animals. It is suspected in Onchocerca volvulus in humans. In most animals, resistance first arose to the avermectins, such as ivermectin (IVM), and subsequently to moxidectin (MOX). Usually when parasite populations are ML-resistant, MOX is more effective than avermectins. MOX may have higher intrinsic potency against some parasites, especially filarial nematodes, than the avermectins. However, it clearly has a significantly different pharmacokinetic profile. It is highly distributed to lipid tissues, less likely to be removed by ABC efflux transporters, is poorly metabolized and has a long half-life. This results in effective concentrations persisting for longer in target hosts. It also has a high safety index. Limited data suggest that anthelmintic resistance may be overcome, at least temporarily, if a high concentration can be maintained at the site of the parasites for a prolonged period of time. Because of the properties of MOX, there are reasonable prospects that strains of parasites that are resistant to avermectins at currently recommended doses will be controlled by MOX if it can be administered at sufficiently high doses and in formulations that enhance its persistence in the host. This review examines the properties of MOX that support this contention and compares them with the properties of other MLs. The case for using MOX to better control ML-resistant parasites is summarised and some outstanding research questions are presented.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Macrolídeos/farmacologia , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/parasitologia , Oncocercose/veterinária , Animais , Humanos , Onchocerca volvulus/crescimento & desenvolvimento , Oncocercose/tratamento farmacológico
14.
PLoS Negl Trop Dis ; 13(3): e0007259, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893302

RESUMO

Cryptosporidiosis caused by the protozoan parasites Cryptosporidium hominis and C. parvum, threatens the lives of young children in developing countries. In veterinary medicine, C. parvum causes life-threatening diarrhea and dehydration in newborn dairy calves. Protocols to detect Cryptosporidium spp. oocysts using flow cytometry have been reported; however, these protocols use antibodies against the parasite and typically focus on detection of oocysts, not quantification. These techniques are not well-suited for studies that generate large variations in oocyst burdens because the amount of antibody required is proportional to the number of oocysts expected in samples. Also, oocysts are lost in washes in the staining protocol, reducing accuracy of oocyst counts. Moreover, these protocols require costly fluorochrome-conjugated monoclonal antibodies and are not optimal for studies involving large numbers of samples. Here we present an optimized protocol for purifying oocysts from mouse stool and intestine samples combined with a reliable method to quantify oocysts in a relatively pure population without the need for antibody staining. We used morphology (SSC-A vs FSC-A) and the innate characteristics of C. parvum oocysts compared to fecal and intestinal contaminants to develop a two-step gating strategy that can differentiate oocysts from debris. This method is a fast, reliable, and high-throughput technique to promote research projects on C. parvum infections in mice and potentially other animal hosts.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , Citometria de Fluxo/métodos , Oocistos/isolamento & purificação , Carga Parasitária/métodos , Animais , Modelos Animais de Doenças , Fezes/parasitologia , Camundongos Endogâmicos C57BL
15.
PLoS Negl Trop Dis ; 13(1): e0006436, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650160

RESUMO

Benzimidazole anthelmintics have long been employed for the control of soil-transmitted helminth infections. Flubendazole (FBZ) was approved in 1980 for the treatment of gastrointestinal nematode infections in both veterinary and human medicine. It has also long been known that parenteral administration of FBZ can lead to high macrofilaricidal efficacy in a variety of preclinical models and in humans. As part of an effort to stimulate the discovery and development of new macrofilaricides, particularly for onchocerciasis, research has recently been devoted to the development of new formulations that would afford high oral bioavailability of FBZ, paving the way for potential clinical development of this repurposed drug for the treatment of human filariases. This review summarizes the background information that led to this program and summarizes some of the lessons learned from it.


Assuntos
Filariose Linfática/tratamento farmacológico , Filaricidas/uso terapêutico , Mebendazol/análogos & derivados , Microfilárias/efeitos dos fármacos , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Wuchereria bancrofti/efeitos dos fármacos , Albendazol/uso terapêutico , Animais , Dietilcarbamazina/uso terapêutico , Filariose Linfática/parasitologia , Filariose Linfática/transmissão , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/parasitologia , Humanos , Ivermectina/uso terapêutico , Mebendazol/uso terapêutico , Oncocercose/parasitologia , Oncocercose/transmissão
17.
Sci Rep ; 8(1): 15921, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374177

RESUMO

Parasitic worms have a remarkable ability to modulate host immune responses through several mechanisms including excreted/secreted proteins (ESP), yet the exact nature of these proteins and their targets often remains elusive. Here, we performed mass spectrometry analyses of ESP (TsESP) from larval and adult stages of the pig whipworm Trichuris suis (Ts) and identified ~350 proteins. Transcriptomic analyses revealed large subsets of differentially expressed genes in the various life cycle stages of the parasite. Exposure of bone marrow-derived macrophages and dendritic cells to TsESP markedly diminished secretion of the pro-inflammatory cytokines TNFα and IL-12p70. Conversely, TsESP exposure strongly induced release of the anti-inflammatory cytokine IL-10, and also induced high levels of nitric oxide (NO) and upregulated arginase activity in macrophages. Interestingly, TsESP failed to directly induce CD4+ CD25+ FoxP3+ regulatory T cells (Treg cells), while OVA-pulsed TsESP-treated dendritic cells suppressed antigen-specific OT-II CD4+ T cell proliferation. Fractionation of TsESP identified a subset of proteins that promoted anti-inflammatory functions, an activity that was recapitulated using recombinant T. suis triosephosphate isomerase (TPI) and nucleoside diphosphate kinase (NDK). Our study helps illuminate the intricate balance that is characteristic of parasite-host interactions at the immunological interface, and further establishes the principle that specific parasite-derived proteins can modulate immune cell functions.


Assuntos
Proteínas de Helminto/metabolismo , Trichuris/metabolismo , Animais , Arginase/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Estágios do Ciclo de Vida , Macrófagos/citologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Suínos/parasitologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Trichuris/crescimento & desenvolvimento
18.
Curr Opin Microbiol ; 46: 73-79, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172862

RESUMO

Extracellular vesicles (EVs) have been characterized from many species of parasitic helminths, and recent experimental evidence supports important functions for their cargo in host-parasite relationships as immunomodulatory mediators. Here we summarize available data on the effects of parasite-derived EVs, including their protein and/or small RNA contents, on their hosts.


Assuntos
Vesículas Extracelulares/metabolismo , Helmintíase/parasitologia , Helmintos/metabolismo , Interações Hospedeiro-Parasita , Animais , Vesículas Extracelulares/genética , Helmintíase/fisiopatologia , Helmintos/genética , Humanos
19.
Sci Rep ; 8(1): 11137, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042399

RESUMO

Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ]ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ]ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ]ex. In striking contrast, brief exposure (1 h) to lethal [CQ]ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure.


Assuntos
Cloroquina/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Cloroquina/efeitos adversos , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética
20.
Int J Parasitol Drugs Drug Resist ; 8(3): 596-606, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30031685

RESUMO

Prophylaxis with macrocyclic lactone (ML) endectocides is the primary strategy for heartworm control. Recent evidence has confirmed that ML-resistant Dirofilaria immitis isolates have evolved. Comparison of genomes of ML-resistant isolates show they are genetically distinct from wild-type populations. Previously, we identified single nucleotide polymorphisms (SNPs) that are correlated with phenotypic ML resistance. Since reliable in vitro assays are not available to detect ML resistance in L3 or microfilarial stages, the failure to reduce microfilaraemia in infected dogs treated with an ML has been proposed as a surrogate clinical assay for this purpose. The goal of our study was to validate the genotype-phenotype correlation between SNPs associated with ML resistance and failure to reduce microfilaraemia following ML treatment and to identify a minimal number of SNPs that could be used to confirm ML resistance. In this study, 29 participating veterinary clinics received a total of 148 kits containing supplies for blood collection, dosing and prepaid shipping. Patients recruited after a diagnosis of heartworm infection were treated with a single standard dose of Advantage Multi® and a blood sample taken pre- and approximately 2-4 weeks post-treatment. Each sample was processed by performing a modified Knott's Test followed by isolation of microfilariae, genomic DNA extraction and MiSeq sequencing of regions encompassing 10 SNP sites highly correlated with ML resistance. We observed significant correlation of SNP loci frequencies with the ML microfilaricidal response phenotype. Although all predictive SNP combination models performed well, a 2-SNP model was superior to other models tested. The predictive ability of these markers for ML-resistant heartworms should be further evaluated in clinical and epidemiological contexts.


Assuntos
DNA de Helmintos/genética , Dirofilaria immitis/efeitos dos fármacos , Dirofilaria immitis/genética , Resistência a Medicamentos/genética , Microfilárias/genética , Animais , Biomarcadores , DNA de Helmintos/isolamento & purificação , Dirofilariose/sangue , Dirofilariose/tratamento farmacológico , Dirofilariose/parasitologia , Dirofilariose/prevenção & controle , Doenças do Cão/sangue , Doenças do Cão/parasitologia , Cães , Filaricidas , Genoma Helmíntico/efeitos dos fármacos , Genoma Helmíntico/genética , Genótipo , Lactonas/farmacologia , Masculino , Microfilárias/efeitos dos fármacos , Fenótipo , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...