Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(13): 11780-11787, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469506

RESUMO

Due to their stability and structural freedom, NASICON-structured materials such as NaTi2(PO4)3 show a lot of promise as active electrode materials for aqueous batteries and deionization cells. However, due to their low intrinsic electronic conductivity, they must usually be composited with carbon to form suitable electrodes for power applications. In this work, two series of NaTi2(PO4)3-carbon composite structures were successfully prepared by different approaches: postsynthetic pyrolytic treatment of citric acid and surface polymerized dopamine. The latter route allows for a superior carbon loading control and yields more uniform and continuous particle coatings. The homogeneity of the polydopamine derived core-shell carbon layer is supported by FTIR, TEM, and XPS analysis. Combustion elemental analysis also indicates significant nitrogen doping in the final carbonaceous structure. The galvanostatic charge and discharge cycling results show similar initial capacities and their retention, but at only half of the carbon loading in polydopamine derived samples. The overall results indicate that careful nanostructure engineering could yield materials with superior properties and stability suitable for various electrochemical applications such as aqueous Na-ion batteries and deionization cells.

2.
ACS Sustain Chem Eng ; 11(8): 3429-3436, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36910249

RESUMO

Aqueous Na-ion batteries are among the most discussed alternatives to the currently dominating Li-ion battery technology, in the area of stationary storage systems because of their sustainability, safety, stability, and environmental friendliness. The electrochemical properties such as ion insertion kinetics, practical capacity, cycling stability, or Coulombic efficiency are strongly dependent on the structure, morphology, and purity of an electrode material. The selection and optimization of materials synthesis route in many cases allows researchers to engineer materials with desired properties. In this work, we present a comprehensive study on size- and shape-controlled hydro(solvo)thermal synthesis of NaTi2(PO4)3 nanoparticles. The effects of different alcohol/water synthesis media on nanoparticle phase purity, morphology, and size distribution are analyzed. Water activity in the synthesis media of different alcohol solutions is identified as the key parameter governing the nanoparticle phase purity, size, and shape. The careful engineering of NaTi2(PO4)3 nanoparticle morphology allows control of the electrochemical performance and degradation of these materials as aqueous Na-ion battery electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...