Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123091

RESUMO

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Camundongos Knockout , Plasticidade Neuronal , Vesículas Sinápticas , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidade Neuronal/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Vesículas Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Hipocampo/metabolismo , Exocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
2.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38050126

RESUMO

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Assuntos
Microtúbulos , Neurônios , Animais , Camundongos , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Neurogênese , Plasticidade Neuronal
3.
Front Immunol ; 14: 1273837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077336

RESUMO

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Astrócitos/metabolismo , Bulbo Olfatório/metabolismo , AMP Cíclico/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
4.
Cell Rep ; 42(7): 112743, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37418322

RESUMO

Homeostatic synaptic plasticity adjusts the strength of synapses to restrain neuronal activity within a physiological range. Postsynaptic guanylate kinase-associated protein (GKAP) controls the bidirectional synaptic scaling of AMPA receptors (AMPARs); however, mechanisms by which chronic activity triggers cytoskeletal remodeling to downscale synaptic transmission are barely understood. Here, we report that the microtubule-dependent kinesin motor Kif21b binds GKAP and likewise is located in dendritic spines in a myosin Va- and neuronal-activity-dependent manner. Kif21b depletion unexpectedly alters actin dynamics in spines, and adaptation of actin turnover following chronic activity is lost in Kif21b-knockout neurons. Consistent with a role of the kinesin in regulating actin dynamics, Kif21b overexpression promotes actin polymerization. Moreover, Kif21b controls GKAP removal from spines and the decrease of GluA2-containing AMPARs from the neuronal surface, thereby inducing homeostatic synaptic downscaling. Our data highlight a critical role of Kif21b at the synaptic actin cytoskeleton underlying homeostatic scaling of neuronal firing.


Assuntos
Actinas , Cinesinas , Actinas/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Miosinas/metabolismo , Espinhas Dendríticas/metabolismo
5.
Nat Commun ; 13(1): 6376, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289226

RESUMO

Mice display signs of fear when neurons that express cFos during fear conditioning are artificially reactivated. This finding gave rise to the notion that cFos marks neurons that encode specific memories. Here we show that cFos expression patterns in the mouse dentate gyrus (DG) change dramatically from day to day in a water maze spatial learning paradigm, regardless of training level. Optogenetic inhibition of neurons that expressed cFos on the first training day affected performance days later, suggesting that these neurons continue to be important for spatial memory recall. The mechanism preventing repeated cFos expression in DG granule cells involves accumulation of ΔFosB, a long-lived splice variant of FosB. CA1 neurons, in contrast, repeatedly expressed cFos. Thus, cFos-expressing granule cells may encode new features being added to the internal representation during the last training session. This form of timestamping is thought to be required for the formation of episodic memories.


Assuntos
Giro Denteado , Aprendizagem Espacial , Animais , Camundongos , Giro Denteado/fisiologia , Hipocampo , Neurônios/metabolismo , Memória Espacial
6.
EMBO Rep ; 23(8): e54361, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735260

RESUMO

The striatum is a subcortical brain region responsible for the initiation and termination of voluntary movements. Striatal spiny projection neurons receive major excitatory synaptic input from neocortex and thalamus, and cyclic nucleotides have long been known to play important roles in striatal function. Yet, the precise mechanism of action is unclear. Here, we combine optogenetic stimulation, 2-photon imaging, and genetically encoded scavengers to dissect the regulation of striatal synapses in mice. Our data show that excitatory striatal inputs are tonically depressed by phosphodiesterases (PDEs), in particular PDE1. Blocking PDE activity boosts presynaptic calcium entry and glutamate release, leading to strongly increased synaptic transmission. Although PDE1 degrades both cAMP and cGMP, we uncover that the concentration of cGMP, not cAMP, controls the gain of striatal inputs. Disturbing this gain control mechanism in vivo impairs motor skill learning in mice. The tight dependence of striatal excitatory synapses on PDE1 and cGMP offers a new perspective on the molecular mechanisms regulating striatal activity.


Assuntos
Corpo Estriado , Sinapses , Animais , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Neurônios/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Tálamo/metabolismo
8.
Sci Rep ; 12(1): 6000, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397639

RESUMO

The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.


Assuntos
Encefalomielite Autoimune Experimental , Canais de Cátion TRPM , Animais , Cálcio/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Potenciais Pós-Sinápticos Excitadores , Glibureto/metabolismo , Glibureto/farmacologia , Hipocampo/metabolismo , Camundongos , Transmissão Sináptica/fisiologia , Canais de Cátion TRPM/metabolismo
9.
Cereb Cortex ; 33(1): 23-34, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203089

RESUMO

Spike-timing-dependent plasticity (STDP) is a candidate mechanism for information storage in the brain, but the whole-cell recordings required for the experimental induction of STDP are typically limited to 1 h. This mismatch of time scales is a long-standing weakness in synaptic theories of memory. Here we use spectrally separated optogenetic stimulation to fire precisely timed action potentials (spikes) in CA3 and CA1 pyramidal cells. Twenty minutes after optogenetic induction of STDP (oSTDP), we observed timing-dependent depression (tLTD) and timing-dependent potentiation (tLTP), depending on the sequence of spiking. As oSTDP does not require electrodes, we could also assess the strength of these paired connections three days later. At this late time point, late tLTP was observed for both causal (CA3 before CA1) and anticausal (CA1 before CA3) timing, but not for asynchronous activity patterns (Δt = 50 ms). Blocking activity after induction of oSTDP prevented stable potentiation. Our results confirm that neurons wire together if they fire together, but suggest that synaptic depression after anticausal activation (tLTD) is a transient phenomenon.


Assuntos
Potenciação de Longa Duração , Neurônios , Potenciação de Longa Duração/fisiologia , Potenciais de Ação/fisiologia , Técnicas de Patch-Clamp , Neurônios/fisiologia , Recompensa , Plasticidade Neuronal/fisiologia
10.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769223

RESUMO

Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for static images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to time-dependent image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.


Assuntos
Algoritmos , Sinalização do Cálcio , Cálcio/metabolismo , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Humanos , Células Jurkat , Microscopia de Fluorescência , Razão Sinal-Ruído
11.
BMC Biol ; 19(1): 227, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663304

RESUMO

BACKGROUND: Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS: Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS: PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.


Assuntos
AMP Cíclico , Optogenética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Drosophila/metabolismo , Luz , Transdução de Sinais
12.
Front Cell Neurosci ; 15: 690147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177468

RESUMO

Ca2+ imaging is the most frequently used technique to study glial cell physiology. While chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs) have become state of the art in recent years. Great improvements have been made since the development of the first GECI and a large number of GECIs with different physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This review discusses some of the most frequently used GECIs and their suitability for glial cell research.

13.
Trends Neurosci ; 44(4): 246-247, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674136

RESUMO

A recent article by Shibata et al. introduces the engineered photoactivatable enzyme paCaMKII. Activation of this new tool is sufficient to induce long-term potentiation (LTP) of hippocampal synapses in slice culture and in intact animals, thereby expanding the existing toolkit for light-induced modification of brain connectivity at the synaptic level.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Sinapses , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Sinapses/metabolismo
14.
Nat Commun ; 11(1): 2464, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424147

RESUMO

Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.


Assuntos
Imageamento Tridimensional , Sinapses/fisiologia , Potenciais de Ação , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Fluorescência , Hipocampo/citologia , Luz , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Sinaptofisina/metabolismo , Fatores de Tempo
15.
Cells ; 9(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972963

RESUMO

In the brain, Hebbian-type and homeostatic forms of plasticity are affected by neuromodulators like dopamine (DA). Modifications of the perisynaptic extracellular matrix (ECM), which control the functions and mobility of synaptic receptors as well as the diffusion of transmitters and neuromodulators in the extracellular space, are crucial for the manifestation of plasticity. Mechanistic links between synaptic activation and ECM modifications are largely unknown. Here, we report that neuromodulation via D1-type DA receptors can induce targeted ECM proteolysis specifically at excitatory synapses of rat cortical neurons via proteases ADAMTS-4 and -5. We showed that receptor activation induces increased proteolysis of brevican (BC) and aggrecan, two major constituents of the adult ECM both in vivo and in vitro. ADAMTS immunoreactivity was detected near synapses, and shRNA-mediated knockdown reduced BC cleavage. We have outlined a molecular scenario of how synaptic activity and neuromodulation are linked to ECM rearrangements via increased cAMP levels, NMDA receptor activation, and intracellular calcium signaling.


Assuntos
Matriz Extracelular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Dopaminérgicos/metabolismo , Sinapses/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Brevicam/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Furina/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Ativação do Canal Iônico , Masculino , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Front Neurosci ; 12: 643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333716

RESUMO

Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.

19.
Nat Commun ; 9(1): 4440, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361563

RESUMO

Marking functionally distinct neuronal ensembles with high spatiotemporal resolution is a key challenge in systems neuroscience. We recently introduced CaMPARI, an engineered fluorescent protein whose green-to-red photoconversion depends on simultaneous light exposure and elevated calcium, which enabled marking active neuronal populations with single-cell and subsecond resolution. However, CaMPARI (CaMPARI1) has several drawbacks, including background photoconversion in low calcium, slow kinetics and reduced fluorescence after chemical fixation. In this work, we develop CaMPARI2, an improved sensor with brighter green and red fluorescence, faster calcium unbinding kinetics and decreased photoconversion in low calcium conditions. We demonstrate the improved performance of CaMPARI2 in mammalian neurons and in vivo in larval zebrafish brain and mouse visual cortex. Additionally, we herein develop an immunohistochemical detection method for specific labeling of the photoconverted red form of CaMPARI. The anti-CaMPARI-red antibody provides strong labeling that is selective for photoconverted CaMPARI in activated neurons in rodent brain tissue.


Assuntos
Neurônios/metabolismo , Engenharia de Proteínas/métodos , Animais , Anticorpos/metabolismo , Fluorescência , Células HeLa , Humanos , Luz , Proteínas Luminescentes/metabolismo , Camundongos , Neurônios/citologia , Ratos Wistar , Córtex Visual/metabolismo , Peixe-Zebra/metabolismo
20.
Cell Rep ; 23(9): 2705-2717, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847800

RESUMO

Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology.


Assuntos
Comportamento Animal , Proteínas de Transporte/metabolismo , Endocitose , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social , Animais , Células COS , Chlorocebus aethiops , Cognição , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Dineínas/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Ácido Glutâmico/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Proteínas de Membrana , Camundongos Knockout , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA