Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(5): 2153-60, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23373984

RESUMO

The objective of this study was to quantify transport of Eu colloids in the vadose zone at the semiarid Hanford site. Eu-hydroxy-carbonate colloids, Eu(OH)(CO3), were applied to the surface of field lysimeters, and migration of the colloids through the sediments was monitored using wick samplers. The lysimeters were exposed to natural precipitation (145-231 mm/year) or artificial irrigation (124-348 mm/year). Wick outflow was analyzed for Eu concentrations, supplemented by electron microscopy and energy-dispersive X-ray analysis. Small amounts of Eu colloids (<1%) were detected in the deepest wick sampler (2.14 m depth) 2.5 months after application and cumulative precipitation of only 20 mm. We observed rapid transport of Eu colloids under both natural precipitation and artificial irrigation; that is, the leading edge of the Eu colloids moved at a velocity of 3 cm/day within the first 2 months after application. Episodic infiltration (e.g., Chinook snowmelt events) caused peaks of Eu in the wick outflow. While a fraction of Eu moved consistent with long-term recharge estimates at the site, the main mass of Eu remained in the top 30 cm of the sediments. This study illustrates that, under field conditions, near-surface colloid mobilization and transport occurred in Hanford sediments.


Assuntos
Monitoramento Ambiental , Európio/química , Sedimentos Geológicos/análise , Coloides/química , Sedimentos Geológicos/química , Chuva , Washington , Movimentos da Água , Poluentes Químicos da Água/química
3.
J Environ Qual ; 33(6): 2317-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15537955

RESUMO

Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into underlying waste. Conventional covers employing resistive barriers as well as alternative covers relying on water-storage principles were monitored in large (10 x 20 m), instrumented drainage lysimeters over a range of climates at 11 field sites in the United States. Surface runoff was a small fraction of the water balance (0-10%, 4% on average) and was nearly insensitive to the cover slope, cover design, or climate. Lateral drainage from internal drainage layers was also a small fraction of the water balance (0-5.0%, 2.0% on average). Average percolation rates for the conventional covers with composite barriers (geomembrane over fine soil) typically were less than 12 mm/yr (1.4% of precipitation) at humid locations and 1.5 mm/yr (0.4% of precipitation) at arid, semiarid, and subhumid locations. Average percolation rates for conventional covers with soil barriers in humid climates were between 52 and 195 mm/yr (6-17% of precipitation), probably due to preferential flow through defects in the soil barrier. Average percolation rates for alternative covers ranged between 33 and 160 mm/yr (6 and 18% of precipitation) in humid climates and generally less than 2.2 mm/yr (0.4% of precipitation) in arid, semiarid, and subhumid climates. One-half (five) of the alternative covers in arid, semiarid, and subhumid climates transmitted less than 0.1 mm of percolation, but two transmitted much more percolation (26.8 and 52 mm) than anticipated during design. The data collected support conclusions from other studies that detailed, site-specific design procedures are very important for successful performance of alternative landfill covers.


Assuntos
Resíduos Perigosos , Eliminação de Resíduos , Poluição da Água/prevenção & controle , Clima , Arquitetura de Instituições de Saúde , Umidade , Chuva , Poluentes do Solo/análise , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...