Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytotechnology ; 63(4): 415-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21626283

RESUMO

The high similarity between pigs and humans makes pigs a good gastrointestinal (GI) model for humans. Recently an epithelial cell line originating from the jejunum of pig (IPEC-J2) became available. Once validated, this model can be used to investigate the complex interactions occurring in the intestine. The advantages of using IPEC-J2 as in vitro model of the GI tract are the high resemblance between humans and pigs, and the ease of extrapolating in vitro to in vivo characteristics. In this study, the IPEC-J2 cells were functionally characterized by measuring the trans-epithelial electrical resistance (TEER), and by histological and ultrastructural studies. IPEC-J2 cells grown on six different permeable support systems, were investigated. The Transwell(®)-COL collagen-coated membrane (1.12 cm(2)) showed the best results concerning time efficiency and TEER values. The optimum seeding density of 12 × 10(5) cells/mL ensured that after 9 days of differentiation a confluent monolayer was formed. The decrease in TEER values after a maximum had been reached, coincided with the ultrastructural development of apical microvilli. We conclude that IPEC-J2 cells grown on collagen-coated membranes represent a valuable in vitro model system for the small intestinal epithelium which can be of great interest for intestinal research.

2.
Comp Funct Genomics ; 2010: 469583, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21318186

RESUMO

IPEC-J2, a promising in vitro model system, is not well characterized especially on the transcriptional level, in contrast to human counterparts. The aim of this study was to characterize the gene expression in IPEC-J2 cells when coincubated with enterotoxigenic Escherichia coli (ETEC), nonpathogenic E. coli, and E. coli endotoxin. Apical infection of polarized IPEC-J2 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TEER). Microarray analysis showed up-regulation of interleukins when IPEC-J2 were cocultured with E. coli strains this has so far never been measured in this cell line. Highest IL8 expression was found with the ETEC strain possessing the F4 fimbrium, suggesting IPEC-J2 cells to be F4 receptor positive, confirmed in a brush border membrane adhesion assay. It is concluded that the innate immune responses to pathogens and LPS makes the IPEC-J2 cell line a suitable model for research on intestinal host pathogen interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA