Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 235(5): 1555-1564, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258435

RESUMO

Recent studies have shown that afferents arising from muscle receptors located on one side can affect the activity of muscles on the contralateral side. In animal preparations, evidence supports that afferent pathways originating from one limb converge onto interneurons mediating disynaptic reciprocal Ia inhibition of the opposite limb. This study was designed to investigate whether this pathway is similar in humans to that described in animals. Thirteen healthy volunteers participated in one of two experiments. In experiment 1, the effects of ipsilateral posterior tibial nerve (iPTN) stimulation were assessed on the reciprocal Ia inhibition of the contralateral soleus (cSOL) motoneuronal pool (n = 8). Across all participants, iPTN stimulation intensity was 1.69 ± 0.3 × Motor Threshold (MT) and contralateral common peroneal (cCPN) stimulation intensity was 0.86 ± 0.16 × MT. iPTN and cCPN stimulation were delivered separately or in combination and changes in the ongoing electromyography (EMG) quantified. In experiment 2, the amplitude of a test SOL H-reflex elicited by contralateral PTN (cPTN) stimulation was quantified following iPTN, cCPN or iPTN + cCPN nerve stimulation (n = 5). Intensities used during the H-reflex conditioning experiment were 1.79 ± 0.4 × MT for the iPTN stimulation and 0.88 ± 0.16 × MT for cCPN stimulation. Across all participants, the onset of the cSOL EMG suppression was 42 ± 4, 44 ± 3 and 44 ± 3 ms for iPTN, cCPN and iPTN + cCPN conditions, respectively. The inhibition from the combined iPTN and cCPN stimulation was significantly greater compared to the algebraic sum of their separate effects. When conditioning the cSOL H-reflex, the ISI between the test cPTN and the iPTN or cCPN stimulus was 5.4 ± 0.5 and 2.6 ± 0.5, respectively. The combined stimulation induced a significantly greater inhibition compared to their separate effects. These data provide evidence of convergence on common inhibitory interneurons by muscle afferents activated by iPTN and cCPN stimulation during sitting. Since the inhibition elicited by cCPN stimulation is known to be mediated by the disynaptic Ia inhibitory pathway, this suggests that the crossed inhibition of cSOL motoneurones elicited by muscle afferents from the ipsilateral plantarflexor muscles is at least partly mediated by Ia inhibitory interneurons in the contralateral human spinal cord. This is similar to what has been observed in the cat.


Assuntos
Tornozelo/fisiologia , Lateralidade Funcional/fisiologia , Reflexo H/fisiologia , Interneurônios/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Adulto , Vias Aferentes , Análise de Variância , Estimulação Elétrica , Eletromiografia , Humanos , Masculino , Contração Muscular/fisiologia , Nervo Tibial/fisiologia , Adulto Jovem
2.
Scand J Med Sci Sports ; 27(11): 1523-1532, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27790760

RESUMO

A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P < 0.001) and HOC (P < 0.001) compared to CON from POST to R1d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed.


Assuntos
Exercício Físico , Consolidação da Memória , Destreza Motora/fisiologia , Adulto , Hóquei , Humanos , Aprendizagem , Masculino , Treinamento Resistido , Adulto Jovem
3.
J Appl Physiol (1985) ; 115(7): 1075-81, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23869059

RESUMO

Optimization of cocontraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we investigated whether short-term cocontraction training in ballet dancers and nondancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and 10 nondancers were recruited for the study. Prior to training, ballet dancers and nondancers showed an equal amount of coherence in the 15- to 35-Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable cocontraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27 min of cocontraction training, the nondancers improved their performance significantly, whereas no significant improvement was observed for the ballet dancers. The nondancers showed a significant increase in 15- to 35-Hz coherence following the training, whereas the ballet dancers did not show a significant change. A group of control subjects (n = 4), who performed cocontraction of the antagonistic muscles for an equal amount of time, but without any requirement to improve their performance, showed no change in coherence. We suggest that improved ability to maintain a stable cocontraction around the ankle joint is accompanied by short-term plastic changes in the neural drive to the involved muscles, but that such changes are not necessary for maintained high-level performance.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Dança/fisiologia , Pé/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Feminino , Humanos , Masculino , Ensino/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA