Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Hepatology ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630448

RESUMO

BACKGROUND: Peginterferon-α (PegIFNα) is of limited utility during immunotolerant (IT) or immune active (IA) phases of chronic hepatitis B infection but is being explored as part of new cure regimens. Low/absent levels of IFNα found in some treated patients are associated with limited/no virological responses. AIM: To determine if sera from participants inhibit IFNα activity and/or contain therapy-induced anti-IFNα antibodies. METHODS: Pre-, on- and post-treatment sera from 61 IT trial participants on PegIFNα/ entecavir therapy and 88 IA trial participants on PegIFNα/tenofovir therapy were screened for anti-IFNα antibodies by indirect ELISA. The neutralization capacity of antibodies was measured by pre-incubation of sera +/- recombinant-human IFNα (rhIFNα) added to Huh7 cells with measurement of interferon stimulated gene (ISG)-induction by qPCR. Correlations between serum-induced ISG inhibition, presence, and titer of anti-IFNα antibodies and virological responses were evaluated. RESULTS: Pre-incubation of on-treatment serum from 26 IT (43%) and 13 IA (15%) participants with rhIFNα markedly blunted ISG-induction in Huh7 cells. Degree of ISG-inhibition correlated with IFNα antibody titer (p<0.0001; r=0.87). On-treatment development of anti-IFNα neutralizing antibodies (nAbs) was associated with reduced qHBsAg and qHBeAg declines (p<0.05) and inhibited IFNα bioactivity to 240 weeks after PegIFNα cessation. Children developed anti-IFNα nAbs more frequently than adults (p=0.004) but nAbs in children had less impact on virological responses. CONCLUSIONS: The development of anti-IFNα nAbs during PegIFNα treatment diminishes responses to antiviral therapy. Understanding how and why anti-IFNα antibodies develop may allow for optimization of IFN-based therapy, which is critical given its renewed use in HBV-cure strategies.

2.
Antiviral Res ; 226: 105893, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679166

RESUMO

With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.

3.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446901

RESUMO

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Adolescente , Adulto , Humanos , Feminino , Masculino , Animais , Camundongos , Caracteres Sexuais , Piruvatos , Glucose , Rim
4.
J Hepatol ; 80(5): 730-743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38199298

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation. METHODS: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial transcriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate PSC-specific differences in immune cell phenotype and function. RESULTS: PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cytokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-γ stimulation. CONCLUSIONS: We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular complexity of PSC and has potential to guide the development of novel treatments. IMPACT AND IMPLICATIONS: Primary sclerosing cholangitis (PSC) is a rare liver disease characterized by chronic inflammation and irreparable damage to the bile ducts, which eventually results in liver failure. Due to a limited understanding of the underlying pathogenesis of disease, treatment options are limited. To address this, we sequenced healthy and diseased livers to compare the activity, interactions, and localization of immune and non-immune cells. This revealed that hepatocytes lining PSC scar regions co-express cholangiocyte markers, whereas immune cells infiltrate the scar lesions. Of these cells, macrophages, which typically contribute to tissue repair, were enriched in immunoregulatory genes and demonstrated a lack of responsiveness to stimulation. These cells may be involved in maintaining hepatic inflammation and could be a target for novel therapies.


Assuntos
Colangite Esclerosante , Humanos , Cicatriz/metabolismo , Cicatriz/patologia , Ecossistema , Fígado/patologia , Cirrose Hepática/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Perfilação da Expressão Gênica
5.
J Immunol ; 212(6): 1002-1011, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294274

RESUMO

Immune-mediated liver damage is the driver of disease progression in patients with chronic hepatitis B virus (HBV) infection. Liver damage is an Ag-independent process caused by bystander activation of CD8 T cells and NK cells. How bystander lymphocyte activation is initiated in chronic hepatitis B patients remains unclear. Periods of liver damage, called hepatic flares, occur unpredictably, making early events difficult to capture. To address this obstacle, we longitudinally sampled the liver of chronic hepatitis B patients stopping antiviral therapy and analyzed immune composition and activation using flow cytometry and single-cell RNA sequencing. At 4 wk after stopping therapy, HBV replication rebounded but no liver damage was detectable. There were no changes in cell frequencies at viral rebound. Single-cell RNA sequencing revealed upregulation of IFN-stimulated genes (ISGs) and proinflammatory cytokine migration inhibitory factor (MIF) at viral rebound in patients that go on to develop hepatic flares 6-18 wk after stopping therapy. The type I IFN signature was only detectable within the liver, and neither IFN-α/ß or ISG induction could be detected in the peripheral blood. In vitro experiments confirmed the type I IFN-dependent ISG profile whereas MIF was induced primarily by IL-12. MIF exposure further amplified inflammatory cytokine production by myeloid cells. Our data show that innate immune activation is detectable in the liver before clinically significant liver damage is evident. The combination of type I IFN and enhanced cytokine production upon MIF exposure represent the earliest immunological triggers of lymphocyte bystander activation observed in hepatic flares associated with chronic HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Fígado , Citocinas/metabolismo , Antivirais/uso terapêutico , Antivirais/metabolismo
6.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055623

RESUMO

BACKGROUND: There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS: We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS: Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS: IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.


Assuntos
Hepatite B Crônica , Humanos , Linfócitos T/metabolismo , Vírus da Hepatite B , Interleucina-2 , Interferon gama , Antígeno B7-H1 , Antígenos E da Hepatite B , Receptor de Morte Celular Programada 1 , Leucócitos Mononucleares/metabolismo , Biomarcadores
7.
JHEP Rep ; 5(9): 100817, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600958

RESUMO

Background & Aims: Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy. Methods: We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB. Liver FNAs were collected from patients with CHB at baseline and 12 and 24 weeks after starting tenofovir alafenamide treatment. Liver FNAs were subjected to single-cell RNA sequencing and analysed using the Viral-Track method. Results: HBV was the only viral genome detected and was enriched within hepatocytes. The 5' sequencing technology identified protein-specific HBV transcripts and showed that tenofovir alafenamide therapy specifically reduced pre-genomic RNA transcripts with little impact on HBsAg or HBx transcripts. Infected hepatocytes displayed unique gene signatures associated with an immunological response to viral infection. Conclusions: Longitudinal liver sampling, combined with single-cell RNA sequencing, captured the dynamic impact of antiviral therapy on the replication status of HBV and revealed host-pathogen interactions at the transcriptional level in infected hepatocytes. This sequencing-based approach is applicable to early-stage clinical studies, enabling mechanistic studies of immunopathology and the effect of novel therapeutic interventions. Impact and Implications: Infection-dependent transcriptional changes and the impact of antiviral therapy on viral replication can be measured in longitudinal human liver biopsies using single-cell RNA sequencing data.

8.
Proc Natl Acad Sci U S A ; 120(24): e2220294120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276424

RESUMO

A hepatitis C virus (HCV) vaccine is urgently needed. Vaccine development has been hindered by HCV's genetic diversity, particularly within the immunodominant hypervariable region 1 (HVR1). Here, we developed a strategy to elicit broadly neutralizing antibodies to HVR1, which had previously been considered infeasible. We first applied a unique information theory-based measure of genetic distance to evaluate phenotypic relatedness between HVR1 variants. These distances were used to model the structure of HVR1's sequence space, which was found to have five major clusters. Variants from each cluster were used to immunize mice individually, and as a pentavalent mixture. Sera obtained following immunization neutralized every variant in a diverse HCVpp panel (n = 10), including those resistant to monovalent immunization, and at higher mean titers (1/ID50 = 435) than a glycoprotein E2 (1/ID50 = 205) vaccine. This synergistic immune response offers a unique approach to overcoming antigenic variability and may be applicable to other highly mutable viruses.


Assuntos
Hepacivirus , Hepatite C , Animais , Camundongos , Proteínas do Envelope Viral/genética , Imunização , Imunidade , Anticorpos Anti-Hepatite C , Anticorpos Neutralizantes
10.
Hepatology ; 78(5): 1525-1541, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158243

RESUMO

BACKGROUND AND AIMS: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. APPROACH AND RESULTS: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S 3 picowell-based and the 10× Chromium reverse-emulsion droplet-based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S 3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. CONCLUSIONS: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.


Assuntos
Hepatite B Crônica , Animais , Humanos , Hepatite B Crônica/tratamento farmacológico , Biópsia por Agulha Fina , Vírus da Hepatite B/genética , Fígado/patologia , Linfócitos T CD8-Positivos , Biomarcadores , Análise de Sequência de RNA
11.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594467

RESUMO

Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand-mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.


Assuntos
Hepatite B Crônica , Humanos , Linfócitos T CD8-Positivos , Cirrose Hepática/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Hepatite B
12.
J Viral Hepat ; 30(1): 64-72, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302162

RESUMO

Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT). PBMCs were available for 55 patients comprising 4 groups: spontaneous clearance (n = 17), acute interferon (n = 14), acute DAA (n = 13) and chronic DAA (n = 11). After controlling for sex, the magnitude of post-treatment HCV-specific responses after acute DAA treatment was greater than after chronic DAA or acute IFN treatment and similar to those found in spontaneous clearers. However, spontaneous clearers responded to more HCV peptide pools indicating greater breadth of response. In conclusion, early treatment with DAAs may prevent or reverse some degree of immune exhaustion and result in stronger HCV-specific responses post-treatment. However, individuals with spontaneous clearance had broader HCV-specific responses.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus , Antivirais/uso terapêutico , Antivirais/farmacologia , Hepatite C Crônica/tratamento farmacológico , Interferons/uso terapêutico , Imunidade
13.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529494

RESUMO

A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.

14.
Nat Commun ; 13(1): 6992, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385011

RESUMO

Interferons induced early after SARS-CoV-2 infection are crucial for shaping immunity and preventing severe COVID-19. We previously demonstrated that injection of pegylated interferon-lambda accelerated viral clearance in COVID-19 patients (NCT04354259). To determine if the viral decline is mediated by enhanced immunity, we assess in vivo responses to interferon-lambda by single cell RNA sequencing and measure SARS-CoV-2-specific T cell and antibody responses between placebo and interferon-lambda-treated patients. Here we show that interferon-lambda treatment induces interferon stimulated genes in peripheral immune cells expressing IFNLR1, including plasmacytoid dendritic cells and B cells. Interferon-lambda does not affect SARS-CoV-2-specific antibody levels or the magnitude of virus-specific T cells. However, we identify delayed T cell responses in older adults, suggesting that interferon-lambda can overcome delays in adaptive immunity to accelerate viral clearance in high-risk patients. Altogether, interferon-lambda offers an early COVID-19 treatment option for outpatients to boost innate antiviral defenses without dampening peripheral adaptive immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferons , Humanos , Idoso , SARS-CoV-2 , Anticorpos Antivirais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linfócitos T
15.
Viruses ; 14(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36016422

RESUMO

HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.


Assuntos
Hepatite B , Simportadores , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Receptores Virais/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico , Internalização do Vírus
17.
Nat Rev Gastroenterol Hepatol ; 19(11): 727-745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35859026

RESUMO

Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Replicação Viral , Biomarcadores , Progressão da Doença , Hepatite B/diagnóstico , Hepatite B/tratamento farmacológico
18.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835913

RESUMO

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Assuntos
COVID-19 , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Alelos , COVID-19/genética , Hospitalização , Humanos , SARS-CoV-2/genética
19.
J Hepatol ; 77(5): 1276-1286, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35716846

RESUMO

BACKGROUND & AIMS: With or without antiviral treatment, few individuals achieve sustained functional cure of chronic hepatitis B virus (HBV) infection. A better definition of what mediates functional cure is essential for improving immunotherapeutic strategies. We aimed to compare HBV-specific T cell responses in patients with different degrees of viral control. METHODS: We obtained blood from 124 HBV-infected individuals, including those with acute self-limiting HBV infection, chronic infection, and chronic infection with functional cure. We screened for HBV-specific T cell specificities by ELISpot, assessed the function of HBV-specific T cells using intracellular cytokine staining, and characterized HBV-specific CD4 T cells using human leukocyte antigen (HLA) class II tetramer staining, all directly ex vivo. RESULTS: ELISpot screening readily identified HBV-specific CD4 and CD8 T cell responses in acute resolving infection compared with more limited reactivity in chronic infection. Applying more sensitive assays revealed higher frequencies of functional HBV-specific CD4 T cells, but not CD8 T cells, in functional cure compared to chronic infection. Function independent analysis using HLA multimers also identified more HBV-specific CD4 T cell responses in functional cure compared to chronic infection, with the emergence of CD4 T cell memory both after acute and chronic infection. CONCLUSIONS: Functional cure is associated with higher frequencies of functional HBV-specific CD4 memory T cell responses. Thus, immunotherapeutic approaches designed to induce HBV functional cure should also aim to improve CD4 T cell responses. LAY SUMMARY: Immunotherapy is a form of treatment that relies on harnessing the power of an individual's immune system to target a specific disease or pathogen. Such approaches are being developed for patients with chronic HBV infection, in an attempt to mimic the immune response in patients who control HBV infection spontaneously, achieving a so-called functional cure. However, what exactly defines protective immune responses remains unclear. Herein, we show that functional cure is associated with robust responses by HBV-specific CD4 T cells (a type of immune cell).


Assuntos
Hepatite B Crônica , Hepatite B , Antígenos de Superfície/uso terapêutico , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas , Hepatite B/tratamento farmacológico , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Humanos
20.
Front Immunol ; 13: 818612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493503

RESUMO

Background & Aim: Men have a higher prevalence of liver disease. Liver myeloid cells can regulate tissue inflammation, which drives progression of liver disease. We hypothesized that sex alters the responsiveness of liver myeloid cells, predisposing men to severe liver inflammation. Methods: Luminex was done on plasma from Hepatitis B Virus infected patients undergoing nucleoside analogue cessation in 45 male and female patients. We collected immune cells from the sinusoids of uninfected livers of 53 male and female donors. Multiparametric flow cytometry was used to phenotype and characterize immune composition. Isolated monocytes were stimulated with TLR ligands to measure the inflammatory potential and the expression of regulators of TLR signaling. Results: We confirmed that men experienced more frequent and severe liver damage upon Hepatitis B Virus reactivation, which was associated with inflammatory markers of myeloid activation. No differences were observed in the frequency or phenotype of sinusoidal myeloid cells between male and female livers. However, monocytes from male livers produced more inflammatory cytokines and chemokines in response to TLR stimulation than female monocytes. We investigated negative regulators of TLR signaling and found that TOLLIP was elevated in female liver-derived monocytes. Conclusions: Our data show that enhanced responsiveness of myeloid cells from the male liver predisposes men to inflammation, which was associated with altered expression of negative regulators of TLR signaling.


Assuntos
Inflamação , Hepatopatias , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Hepatopatias/metabolismo , Masculino , Monócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...