RESUMO
Acute febrile syndrome is a frequent reason for medical consultations in tropical and subtropical countries where the cause could have an infectious origin. Malaria and dengue are the primary etiologies in Colombia. As such, constant epidemiological surveillance and new diagnostic tools are required to identify the causative agents. A descriptive cross-sectional study was conducted to evaluate the circulation and differential diagnosis of six pathogens in two regions of Colombia. The results obtained via multiplex reverse transcription polymerase chain reaction combined with a microwell hybridization assay (m-RT-PCR-ELISA) were comparable to those obtained using rapid tests conducted at the time of patient enrollment. Of 155 patients evaluated, 25 (16.1%) and 16 (10.3%) were positive for malaria and dengue, respectively; no samples were positive for any of the other infectious agents tested. In most cases, m-RT-PCR-ELISA confirmed the results previously obtained through rapid testing.
RESUMO
Plant and herbal essential oils (EOs) offer a wide range of pharmacological actions that include anticancer effects. Here, we evaluated the cytotoxic activity of EO from Lippia alba (chemotype linalool), L. alba (chemotype dihydrocarvone, LaDEO), Clinopodium nepeta (L.) Kuntze (CnEO), Eucalyptus globulus, Origanum × paniculatum, Mentha × piperita, Mentha arvensis L., and Rosmarinus officinalis L. against human lung (A549) and colon (HCT-116) cancer cells. The cells were treated with increasing EO concentrations (0-500 µL/L) for 24 h, and cytotoxic activity was assessed. LaDEO and CnEO were the most potent EOs evaluated (IC50 range, 145-275 µL/L). The gas chromatography-mass spectrometry method was used to determine their composition. Considering EO limitations as therapeutic agents (poor water solubility, volatilization, and oxidation), we evaluated whether LaDEO and CnEO encapsulation into solid lipid nanoparticles (SLN/EO) enhanced their anticancer activity. Highly stable spherical SLN/LaDEO and SLN/CnEO SLN/EO were obtained, with a mean diameter of 140-150 nm, narrow size dispersion, and Z potential around -5mV. EO encapsulation strongly increased their anticancer activity, particularly in A549 cells exposed to SLN/CnEO (IC50 = 66 µL/L CnEO). The physicochemical characterization, biosafety, and anticancer mechanisms of SLN/CnEO were also evaluated in A549 cells. SLN/CnEO containing 97 ± 1% CnEO was highly stable for up to 6 months. An increased in vitro CnEO release from SLN at an acidic pH (endolysosomal compartment) was observed. SLN/CnEO proved to be safe against blood components and non-toxic for normal WI-38 cells at therapeutic concentrations. SLN/CnEO substantially enhanced A549 cell death and cell migration inhibition compared with free CnEO.
RESUMO
Vitamin E (VitE) is one of the most important antioxidants and plays a key role in decreasing the inflammatory effects of oxidative stress caused by recurrent doses of iron administration in anemia treatment. However, VitE is poorly soluble in aqueous environments. Here, VitE encapsulation into solid lipid nanoparticles (SLN) composed of myristil myristate to improve its bioavailability was proposed. A 99.9 ± 0.1% encapsulation efficiency with a drug/lipid ratio of 500 µg/mg and 478 higher VitE solubility was obtained. The antioxidant properties of VitE after encapsulation were maintained. SLN-VitE showed a 228.2 nm mean diameter with low polidispersitivity (0.335), and negative Z potential (ζ ≈ -9.0 mV). The SLN were well-dispersed, displayed spherical and homogeneous morphology by TEM. A controlled release of VitE from SLN was found. The XRD and FTIR analyses revealed the presence of a nanostructured architecture of SLN after VitE incorporation. We probed the safety of SLN-VitE after contact with three in vitro cell models: erythrocytes, lymphocytes and HepG2 cells. The cell viability in presence of SLN, SLN-VitE, and their combinations with iron was not affected. The comet assay demonstrated that the DNA damage caused by iron administration was decrease in presence of SLN-VitE.
Assuntos
Anemia , Nanopartículas , Humanos , Portadores de Fármacos , Lipídeos , Vitamina E , Tamanho da Partícula , Antioxidantes/farmacologia , Anemia/induzido quimicamente , Anemia/tratamento farmacológicoRESUMO
Haemolytic uremic syndrome often affects children causing a relevant morbidity and mortality. We compared the time to diagnosis by multiplex-PCR and stool culture in 15 children from two centres. Multiplex-PCR accelerated the time to diagnosis by 94 (95% confidence interval, 80-119; P = 0.0007) hours. Multiplex-PCR offers a time advantage of stool culture that may aid in earlier identification of outbreak clusters.