Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 276, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803478

RESUMO

BACKGROUND: Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids. METHODS: EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data. RESULTS: Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107a+EVs with neurofilament levels in blood of MS patients and HC. CONCLUSIONS: The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.


Extracellular vesicles (EVs) are tiny particles released by cells, carrying unique biomolecules specific to their cell of origin. EVs from the central nervous system (CNS) can reach the blood, where they could serve as liquid-biopsy markers for diagnosing brain diseases like neurodegenerative disorders and tumors. This study evaluated a flow cytometry platform (here termed EV Neuro assay), which can detect multiple EV-associated markers simultaneously, to assess its potential for identifying CNS-derived EVs and disease-specific markers in complex samples including the blood. The study compared different sample materials and methods for isolating EVs. We found distinct EV profiles in EVs derived from glioblastoma and human astrocytes, with signal intensities increasing as more EVs were present. Analyzing serum or plasma from patients with brain diseases and healthy individuals, we observed that EV marker intensities were varying between individuals. Importantly, data normalization improved the identification of disease-specific markers, such as CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis, which were significantly higher in disease compared to healthy controls. Advanced clustering analysis techniques effectively distinguished glioblastoma patients from controls. Furthermore, a potential correlation between CD107a+EVs and neurofilament levels in multiple sclerosis patients was discovered. Overall, the semi-quantitative EV Neuro assay proved useful for profiling EVs in complex samples. However, for more reliable results in biomarker studies, larger sample cohorts and higher effect sizes are necessary. Nonetheless, this initial trial confirmed the potential of the EV Neuro assay for discovering disease-associated EV markers and monitoring circulating EV profiles in CNS diseases.


Assuntos
Vesículas Extracelulares , Glioblastoma , Esclerose Múltipla , Humanos , Glioblastoma/metabolismo , Citometria de Fluxo , Sistema Nervoso Central , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Esclerose Múltipla/metabolismo
2.
BMC Cancer ; 23(1): 762, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587449

RESUMO

BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Recidiva Local de Neoplasia , Morte Celular , Processos Neoplásicos , Esfingolipídeos
3.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159214

RESUMO

Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.


Assuntos
Ativação de Macrófagos , MicroRNAs , Macrófagos/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Transdução de Sinais
4.
iScience ; 24(12): 103407, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877484

RESUMO

We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.

5.
Eur J Immunol ; 51(5): 1246-1261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33442873

RESUMO

Tumor-associated macrophages facilitate tumor progression and resistance to therapy. Their capacity for metabolic and inflammatory reprogramming represents an attractive therapeutic target. ONC201/TIC10 is an anticancer molecule that antagonizes the dopamine receptor D2 and affects mitochondria integrity in tumor cells. We examined whether ONC201 induces a metabolic and pro-inflammatory switch in primary human monocyte-derived macrophages that reactivates their antitumor activities, thus enhancing the onco-toxicity of ONC201. Contrary to glioblastoma cells, macrophages exhibited a low ratio of dopamine receptors D2/D5 gene expression and were resistant to ONC201 cytotoxicity. Macrophages responded to ONC201 with a severe loss of mitochondria integrity, a switch to glycolytic ATP production, alterations in glutamate transport, and a shift towards a pro-inflammatory profile. Treatment of macrophages-glioblastoma cells co-cultures with ONC201 induced similar alterations in glutamatergic and inflammatory gene expression profiles of macrophages. It induced as well metabolic changes and a pro-inflammatory switch of the co-culture milieu. However, these changes did not translate into increased onco-toxicity. This study provides the first evidence that ONC201 affects macrophage immunometabolism and leads to a pro-inflammatory tumor environment. This speaks in favor of implementing ONC201 in combinatorial therapies and warrants further investigation of the mechanisms of action of ONC201 in macrophages and other immune cells.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Ácido Glutâmico/metabolismo , Humanos , Macrófagos/imunologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
6.
Sci Rep ; 9(1): 17908, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784632

RESUMO

Tumor-derived primary cells are essential for in vitro and in vivo studies of tumor biology. The scarcity of this cellular material limits the feasibility of experiments or analyses and hence hinders basic and clinical research progress. We set out to determine the minimum number of cells that can be analyzed with standard laboratory equipment and that leads to reliable results, unbiased by cell number. A proof-of-principle study was conducted with primary human monocyte-derived macrophages, seeded in decreasing number and constant cell density. Gene expression of cells stimulated to acquire opposite inflammatory states was analyzed by quantitative PCR. Statistical analysis indicated the lack of significant difference in the expression profile of cells cultured at the highest (100,000 cells) and lowest numbers (3,610 cells) tested. Gene Ontology, pathway enrichment and network analysis confirmed the reliability of the data obtained with the lowest cell number. This statistical and computational analysis of gene expression profiles indicates that low cell number analysis is as dependable and informative as the analysis of a larger cell number. Our work demonstrates that it is possible to employ samples with a scarce number of cells in experimental studies and encourages the application of this approach on other cell types.


Assuntos
Perfilação da Expressão Gênica/normas , Macrófagos/metabolismo , Cultura Primária de Células/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Cultura Primária de Células/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcriptoma
7.
Viruses ; 10(4)2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584637

RESUMO

Single nucleotide changes were introduced into the non-structural (NS) coding sequence of the H-1 parvovirus (PV) infectious molecular clone and the corresponding virus stocks produced, thereby generating H1-PM-I, H1-PM-II, H1-PM-III, and H1-DM. The effects of the mutations on viral fitness were analyzed. Because of the overlapping sequences of NS1 and NS2, the mutations affected either NS2 (H1-PM-II, -III) or both NS1 and NS2 proteins (H1-PM-I, H1-DM). Our results show key benefits of PM-I, PM-II, and DM mutations with regard to the fitness of the virus stocks produced. Indeed, these mutants displayed a higher production of infectious virus in different cell cultures and better spreading capacity than the wild-type virus. This correlated with a decreased particle-to-infectivity (P/I) ratio and stimulation of an early step(s) of the viral cycle prior to viral DNA replication, namely, cell binding and internalization. These mutations also enhance the transduction efficiency of H-1PV-based vectors. In contrast, the PM-III mutation, which affects NS2 at a position downstream of the sequence deleted in Del H-1PV, impaired virus replication and spreading. We hypothesize that the NS2 protein-modified in H1-PM-I, H1-PM-II, and H1-DM-may result in the stimulation of some maturation step(s) of the capsid and facilitate virus entry into subsequently infected cells.


Assuntos
Vetores Genéticos/genética , Parvovirus H-1/fisiologia , Fases de Leitura Aberta/genética , Infecções por Parvoviridae/virologia , Transdução Genética , Proteínas não Estruturais Virais/genética , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Linhagem Celular , DNA Viral/biossíntese , DNA Viral/metabolismo , Parvovirus H-1/genética , Parvovirus H-1/crescimento & desenvolvimento , Humanos , Mutação , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Virais/metabolismo , Ligação Viral , Internalização do Vírus , Liberação de Vírus , Replicação Viral
8.
Viruses ; 9(10)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039746

RESUMO

Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.


Assuntos
Morte Celular , Parvovirus H-1/fisiologia , Vírus Oncolíticos/fisiologia , Osteossarcoma/patologia , Osteossarcoma/virologia , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Terapia Viral Oncolítica , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...