Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 3(4): 850-74, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26501327

RESUMO

Alternatives to the well-established capsular polysaccharide-based vaccines against Streptococcus pneumoniae that circumvent limitations arising from limited serotype coverage and the emergence of resistance due to capsule switching (serotype replacement) are being widely pursued. Much attention is now focused on the development of recombinant subunit vaccines based on highly conserved pneumococcal surface proteins and virulence factors. A further step might involve focusing the host humoral immune response onto protective protein epitopes using as immunogens structurally optimized epitope mimetics. One approach to deliver such epitope mimetics to the immune system is through the use of synthetic virus-like particles (SVLPs). SVLPs are made from synthetic coiled-coil lipopeptides that are designed to spontaneously self-assemble into 20-30 nm diameter nanoparticles in aqueous buffer. Multivalent display of epitope mimetics on the surface of SVLPs generates highly immunogenic nanoparticles that elicit strong epitope-specific humoral immune responses without the need for external adjuvants. Here, we set out to demonstrate that this approach can yield vaccine candidates able to elicit a protective immune response, using epitopes derived from the proline-rich region of pneumococcal surface protein A (PspA). These streptococcal SVLP-based vaccine candidates are shown to elicit strong humoral immune responses in mice. Following active immunization and challenge with lethal doses of streptococcus, SVLP-based immunogens are able to elicit significant protection in mice. Furthermore, a mimetic-specific monoclonal antibody is shown to mediate partial protection upon passive immunization. The results show that SVLPs combined with synthetic epitope mimetics may have potential for the development of an effective vaccine against Streptococcus pneumoniae.

2.
FEMS Microbiol Lett ; 306(1): 45-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20337711

RESUMO

Ferredoxins are required to supply electrons to the cytochrome P450 enzymes involved in cross-linking reactions during the biosynthesis of the glycopeptide antibiotics balhimycin and vancomycin. However, the biosynthetic gene clusters for these antibiotics contain no ferredoxin- or ferredoxin reductase-like genes. In a search for potential ferredoxin partners for these P450s, here, we report an in silico analysis of the draft genome sequence of the balhimycin producer Amycolatopsis balhimycina, which revealed 11 putative Fe-S-containing ferredoxin genes. We show that two members (balFd-V and balFd-VII), produced as native-like holo-[3Fe-4S] ferredoxins in Escherichia coli, could supply electrons to the P450 OxyB (CYP165B) from both A. balhimycina and the vancomycin producer Amycolatopsis orientalis, and support in vitro turnover of peptidyl carrier protein-bound peptide substrates into monocyclic cross-linked products. These results show that ferredoxins encoded in the antibiotic-producing strain can act in a degenerate manner in supporting the catalytic functions of glycopeptide biosynthetic P450 enzymes from the same as well as heterologous gene clusters.


Assuntos
Actinomycetales/enzimologia , Actinomycetales/genética , Antibacterianos/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas/genética , Genoma Bacteriano , Glicopeptídeos/biossíntese , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Vancomicina/análogos & derivados , Vancomicina/biossíntese
3.
Methods Enzymol ; 458: 487-509, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19374995

RESUMO

Oxidative phenol cross-linking reactions play a key role in the biosynthesis of glycopeptide antibiotics such as vancomycin. The vancomycin aglycone contains three cross-links between aromatic amino acid side-chains, which stabilize the folded backbone conformation required for binding to the target D-Ala-D-Ala dipeptide. At least the first cross-link is introduced into a peptide precursor whilst it is still bound as a thioester to a peptide carrier protein (PCP) domain (also called a thiolation domain) within the nonribosomal peptide synthetase. We described here methods for the solid-phase synthesis of peptides and their coupling to PCP domains, which may be useful for in vitro studies of cross-linking and related tailoring reactions during nonribosomal glycopeptide antibiotic biosynthesis.


Assuntos
Vancomicina/biossíntese , Biologia Computacional , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Estrutura Molecular , Biossíntese Peptídica , Peptídeo Sintases/metabolismo , Vancomicina/química
4.
Org Biomol Chem ; 6(16): 2861-7, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18688478

RESUMO

OxyB is a cytochrome P450 enzyme that catalyzes the first oxidative phenol coupling reaction during vancomycin biosynthesis. The preferred substrate is a linear peptide linked as a C-terminal thioester to a peptide carrier protein (PCP) domain of the glycopeptide antibiotic non-ribosomal peptide synthetase. Previous studies have shown that OxyB can efficiently oxidize a model hexapeptide-PCP conjugate (R-Leu(1)-R-Tyr(2)-S-Asn(3)-R-Hpg(4)-R-Hpg(5)-S-Tyr(6)-S-PCP) (Hpg = 4-hydroxyphenylglycine) into a macrocyclic product by phenolic coupling of the aromatic rings in residues-4 and -6. In this work, the substrate specificity of OxyB has been explored using a series of N-terminally truncated peptides related in sequence to this model hexapeptide-PCP conjugate. Deletion of one or three residues from the N-terminus afforded a penta- (Ac-Tyr-Asn-Hpg-Hpg-Tyr-S-PCP) and a tri- (Ac-Hpg-Hpg-Tyr-S-PCP) peptide that were also efficiently transformed into the corresponding macrocyclic cross-linked product by OxyB. The tripeptide, representing the core of the macrocycle in vancomycin created by OxyB, is thus sufficient, as a thioester with the PCP domain, for phenol coupling to occur. The related tetrapeptide-PCP thioester was not cyclized by OxyB, neither was a related model hexapeptide containing tryptophan in place of tyrosine-6, nor were tripeptides (related to the natural product K-13) with the sequence Ac-Tyr-Tyr-Tyr-S-PCP cross-linked by OxyB.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Fenóis/química , Receptores de Esteroides/química , Vancomicina/biossíntese , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Molecular , Receptores de Esteroides/metabolismo , Especificidade por Substrato
5.
Bioorg Med Chem Lett ; 18(10): 3081-4, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18068978

RESUMO

OxyB catalyzes the first oxidative phenol coupling reaction in vancomycin biosynthesis. OxyB is a P450 hemoprotein whose activity is strictly dependent upon the presence of molecular oxygen. Here, it was shown that label from (18)O(2) is not incorporated into the monocyclic product during catalysis by OxyB. In addition, it was shown that OxyB can convert a model hexapeptide substrate containing (R)-Tyr6, instead of (S)-Tyr6, covalently linked as a C-terminal thioester to a peptidyl carrier protein (PCP-7S) derived from the vancomycin non-ribosomal peptide synthetase (NRPS), into the corresponding epimeric monocyclic product. The binding of this epimeric hexapeptide-PCP conjugate to the Fe(III) form of OxyB, as monitored by UV-vis spectroscopy, revealed a K(d)=35+/-5 microM. Thus, the enzyme reveals a surprising lack of stereospecificity in the binding and transformation of these epimeric substrates.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Oxigênio/química , Peptídeos/química , Fenóis/química , Vancomicina/química , Ligação Competitiva , Proteínas de Transporte/química , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Biológicos , Estrutura Molecular , Oxirredução , Oxigênio/metabolismo , Isótopos de Oxigênio , Fenóis/metabolismo , Estereoisomerismo , Vancomicina/biossíntese
6.
J Am Chem Soc ; 129(21): 6887-95, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17477533

RESUMO

OxyB is a cytochrome P450 enzyme that catalyzes the first phenol coupling reaction during the biosynthesis of vancomycin-like glycopeptide antibiotics. The phenol coupling reaction occurs on a linear peptide intermediate linked as a C-terminal thioester to a peptide carrier protein (PCP) domain within the multidomain glycopeptide nonribosomal peptide synthetase (NRPS). Using model peptides with the sequence (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-S-PCP and (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-(S)Dpg-S-PCP (where Hpg = 4-hydroxyphenylglycine, and Dpg = 3,5-dihydroxyphenylglycine), or containing (R)Leu instead of (R)(NMe)Leu, attached to recombinant PCPs derived from modules-6 and -7 in the vancomycin NRPS, we show that cross-linking of Hpg4 and Tyr6 by OxyB can occur in both hexapeptide- and heptapeptide-PCP conjugates. Thus, whereas OxyB may act preferentially on a hexapeptide still linked to the PCP-6 in NRPS subunit-2, it is possible that a linear heptapeptide intermediate linked to PCP-7 in NRPS subunit-3 may also be transformed into monocyclic product. For turnover, OxyB requires electrons, which in vitro can be supplied by spinach ferredoxin and E. coli flavodoxin reductase. Turnover is also dependent upon the presence of molecular oxygen. The model substrate (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-S-PCP is transformed into cross-linked product by OxyB with a kcat of 0.1 s-1 and Km in the range 4-13 muM. Equilibrium binding of this substrate to OxyB, monitored by UV-vis, is accompanied by a typical low-to-high spin state change in the heme, characterized with a Kd of 17 +/- 5 muM.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico/fisiologia , Vancomicina/biossíntese , Actinomycetales/enzimologia , Cinética , Oxirredução , Peptídeo Sintases/metabolismo , Fenóis/metabolismo , Espectrofotometria Ultravioleta
7.
J Org Chem ; 72(10): 3614-24, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17428094

RESUMO

Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Aminação , Ligantes , Estrutura Molecular , Peptídeos/química , Pirazóis/síntese química , Pirazóis/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...