Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(4): 637-662, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243117

RESUMO

The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(52): e2311460120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127986

RESUMO

The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Humanos , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/patologia , Genes p53 , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Microambiente Tumoral/genética
3.
Mol Cell Proteomics ; 22(7): 100587, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290530

RESUMO

Comprehensive molecular characterization of tumors aims to uncover cancer vulnerabilities, drug resistance mechanisms, and biomarkers. Identification of cancer drivers was suggested as the basis for patient-tailored therapy, and transcriptomic analyses were proposed to reveal the phenotypic outcome of cancer mutations. With the maturation of the proteomic field, studies of protein-RNA discrepancies suggested that RNA analyses are insufficient to predict cellular functions. In this article we discuss the importance of direct mRNA-protein comparisons in clinical cancer studies. We make use of the large amount of data generated by the Clinical Proteomic Tumor Analysis Consortium, which includes protein and mRNA expression analyses from the exact same samples. Analysis of protein-RNA correlations showed marked differences among cancer types, and highlighted the protein-RNA similarities and discrepancies among functional pathways and drug targets. Additionally, unsupervised clustering of the data based on protein or RNA showed substantial differences in tumor classification and the cellular processes that differentiate between clusters. These analyses show the difficulty to predict protein levels from mRNAs, and the critical role of protein analyses for phenotypic tumor characterization.


Assuntos
Neoplasias , Proteômica , Humanos , RNA , Neoplasias/genética , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Biomarcadores Tumorais/genética
4.
Int J Cancer ; 153(3): 654-668, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141410

RESUMO

Glioblastoma (GB) is the most aggressive neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness and drug resistance. Only a small fraction of GB patients survives longer than 24 months from the time of diagnosis (ie, long-term survivors [LTS]). In our study, we aimed to identify molecular markers associated with favorable GB prognosis as a basis to develop therapeutic applications to improve patients' outcome. We have recently assembled a proteogenomic dataset of 87 GB clinical samples of varying survival rates. Following RNA-seq and mass spectrometry (MS)-based proteomics analysis, we identified several differentially expressed genes and proteins, including some known cancer-related pathways and some less established that showed higher expression in short-term (<6 months) survivors (STS) compared to LTS. One such target found was deoxyhypusine hydroxylase (DOHH), which is known to be involved in the biosynthesis of hypusine, an unusual amino acid essential for the function of the eukaryotic translation initiation factor 5A (eIF5A), which promotes tumor growth. We consequently validated DOHH overexpression in STS samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. We further showed robust inhibition of proliferation, migration and invasion of GB cells following silencing of DOHH with short hairpin RNA (shRNA) or inhibition of its activity with small molecules, ciclopirox and deferiprone. Moreover, DOHH silencing led to significant inhibition of tumor progression and prolonged survival in GB mouse models. Searching for a potential mechanism by which DOHH promotes tumor aggressiveness, we found that it supports the transition of GB cells to a more invasive phenotype via epithelial-mesenchymal transition (EMT)-related pathways.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ciclopirox , Sobreviventes
5.
Cancer Immunol Res ; 11(7): 909-924, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37074069

RESUMO

Immunotherapy has revolutionized the treatment of advanced melanoma. Because the pathways mediating resistance to immunotherapy are largely unknown, we conducted transcriptome profiling of preimmunotherapy tumor biopsies from patients with melanoma that received PD-1 blockade or adoptive cell therapy with tumor-infiltrating lymphocytes. We identified two melanoma-intrinsic, mutually exclusive gene programs, which were controlled by IFNγ and MYC, and the association with immunotherapy outcome. MYC-overexpressing melanoma cells exhibited lower IFNγ responsiveness, which was linked with JAK2 downregulation. Luciferase activity assays, under the control of JAK2 promoter, demonstrated reduced activity in MYC-overexpressing cells, which was partly reversible upon mutagenesis of a MYC E-box binding site in the JAK2 promoter. Moreover, silencing of MYC or its cofactor MAX with siRNA increased JAK2 expression and IFNγ responsiveness of melanomas, while concomitantly enhancing the effector functions of T cells coincubated with MYC-overexpressing cells. Thus, we propose that MYC plays a pivotal role in immunotherapy resistance through downregulation of JAK2.


Assuntos
Melanoma , Humanos , Regulação para Baixo , Melanoma/genética , Melanoma/terapia , Melanoma/patologia , Imunoterapia , Linfócitos T/patologia , Interferon gama/genética , Janus Quinase 2/genética
6.
Nat Methods ; 20(3): 324-326, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899159
7.
J Crohns Colitis ; 17(6): 960-971, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36655602

RESUMO

BACKGROUND AND AIMS: Widespread dysregulation of long non-coding RNAs [lncRNAs] including a reduction in GATA6-AS1 was noted in inflammatory bowel disease [IBD]. We previously reported a prominent inhibition of epithelial mitochondrial functions in ulcerative colitis [UC]. However, the connection between reduction of GATA6-AS1 expression and attenuated epithelial mitochondrial functions was not defined. METHODS: Mucosal transcriptomics was used to conform GATA6-AS1 reduction in several treatment-naïve independent human cohorts [n=673]. RNA pull-down followed by mass spectrometry was used to determine the GATA6-AS1 interactome. Metabolomics and mitochondrial respiration following GATA6-AS1 silencing in Caco-2 cells were used to elaborate on GATA6-AS1 functions. RESULTS: GATA6-AS1 showed predominant expression in gut epithelia using single cell datasets. GATA6-AS1 levels were reduced in Crohn's disease [CD] ileum and UC rectum in independent cohorts. Reduced GATA6-AS1 lncRNA was further linked to a more severe UC form, and to a less favourable UC course. The GATA6-AS1 interactome showed robust enrichment for mitochondrial proteins, and included TGM2, an autoantigen in coeliac disease that is induced in UC, CD and coeliac disease, in contrast to GATA6-AS1 reduction in these cohorts. GATA6-AS1 silencing resulted in induction of TGM2, and this was coupled with a reduction in mitochondrial membrane potential and mitochondrial respiration, as well as in a reduction of metabolites linked to aerobic respiration relevant to mucosal inflammation. TGM2 knockdown in GATA6-AS1-deficient cells rescued mitochondrial respiration. CONCLUSIONS: GATA6-AS1 levels are reduced in UC, CD and coeliac disease, and in more severe UC forms. We highlight GATA6-AS1 as a target regulating epithelial mitochondrial functions, potentially through controlling TGM2 levels.


Assuntos
Doença Celíaca , Colite Ulcerativa , Doença de Crohn , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Células CACO-2 , Mucosa Intestinal/metabolismo , Doença de Crohn/metabolismo , Reto , Inflamação/metabolismo , Mitocôndrias/metabolismo , Fator de Transcrição GATA6/metabolismo
9.
Int J Cancer ; 152(4): 781-793, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36214786

RESUMO

No current screening methods for high-grade ovarian cancer (HGOC) guarantee effective early detection for high-risk women such as germline BRCA mutation carriers. Therefore, the standard-of-care remains risk-reducing salpingo-oophorectomy (RRSO) around age 40. Proximal liquid biopsy is a promising source of biomarkers, but sensitivity has not yet qualified for clinical implementation. We aimed to develop a proteomic assay based on proximal liquid biopsy, as a decision support tool for monitoring high-risk population. Ninety Israeli BRCA1 or BRCA2 mutation carriers were included in the training set (17 HGOC patients and 73 asymptomatic women), (BEDOCA trial; ClinicalTrials.gov Identifier: NCT03150121). The proteome of the microvesicle fraction of the samples was profiled by mass spectrometry and a classifier was developed using logistic regression. An independent cohort of 98 BRCA mutation carriers was used for validation. Safety information was collected for all women who opted for uterine lavage in a clinic setting. We present a 7-protein diagnostic signature, with AUC >0.97 and a negative predictive value (NPV) of 100% for detecting HGOC. The AUC of the biomarker in the independent validation set was >0.94 and the NPV >99%. The sampling procedure was clinically acceptable, with favorable pain scores and safety. We conclude that the acquisition of Müllerian tract proximal liquid biopsies in women at high-risk for HGOC and the application of the BRCA-specific diagnostic assay demonstrates high sensitivity, specificity, technical feasibility and safety. Similar classifier for an average-risk population is warranted.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Adulto , Genes BRCA2 , Mutação , Proteômica , Salpingo-Ooforectomia , Proteína BRCA1/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovariectomia , Mutação em Linhagem Germinativa , Neoplasias da Mama/genética , Predisposição Genética para Doença
10.
Elife ; 112022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189922

RESUMO

The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability.


Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells' survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.


Assuntos
Neoplasias da Mama , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias da Mama/genética , Proteína Quinase CDC2/metabolismo , DNA , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Glucose , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina/genética
11.
Cancer Res ; 82(22): 4164-4178, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36084256

RESUMO

Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE: Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.


Assuntos
Exercício Físico , Melanoma , Nutrientes , Proteômica , Animais , Humanos , Camundongos , Glucose/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Estudos Prospectivos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Exercício Físico/fisiologia , Nutrientes/genética , Nutrientes/metabolismo
12.
Trends Cancer ; 8(12): 1019-1032, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995681

RESUMO

Tumor cells present complex behaviors in their interactions with other cells. This intricate behavior is driving the need to develop new tools to understand these ecosystems. The surge of spatial technologies allows evaluation of the complexity of relationships between cells present in a tumor, giving insights about tumor heterogeneity and the tumor microenvironment while providing clinically relevant metrics for tumor classification. In this review, we describe key results obtained using spatial techniques, present recent advances in methods to uncover spatially relevant biological significance, and summarize their main characteristics. We expect spatial technologies to significantly broaden our understanding of tumor biology and to generate clinically relevant tools that will ultimately impact personalized medicine.


Assuntos
Ecossistema , Neoplasias , Humanos , Microambiente Tumoral , Medicina de Precisão , Neoplasias/genética , Neoplasias/patologia , Genômica/métodos
13.
Curr Opin Biotechnol ; 76: 102736, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644059

RESUMO

Single-cell analyses characterize individual cells, allowing their clustering and characterization in an unsupervised manner. Single-cell genomics and transcriptomics dominate the field of single-cell analysis, however, these often do not accurately reflect cellular functions. In contrast, single-cell protein analyses were until recently only performed using antibody-based approaches. This review aims to highlight the recent developments in mass spectrometry-based single-cell proteomics and discuss the challenges and opportunities. Advances in the field hold the promise to impact biomedical research and contribute to the understanding of complex biological systems.


Assuntos
Genômica , Proteômica , Espectrometria de Massas , Proteínas , Análise de Célula Única
14.
Cell Rep ; 38(8): 110418, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196484

RESUMO

By establishing multi-omics pipelines, we uncover overexpression and gene copy-number alterations of nucleoporin-93 (NUP93), a nuclear pore component, in aggressive human mammary tumors. NUP93 overexpression enhances transendothelial migration and matrix invasion in vitro, along with tumor growth and metastasis in animal models. These findings are supported by analyses of two sets of naturally occurring mutations: rare oncogenic mutations and inactivating familial nephrotic syndrome mutations. Mechanistically, NUP93 binds with importins, boosts nuclear transport of importins' cargoes, such as ß-catenin, and activates MYC. Likewise, NUP93 overexpression enhances the ultimate nuclear transport step shared by additional signaling pathways, including TGF-ß/SMAD and EGF/ERK. The emerging addiction to nuclear transport exposes vulnerabilities of NUP93-overexpressing tumors. Congruently, myristoylated peptides corresponding to the nuclear translocation signals of SMAD and ERK can inhibit tumor growth and metastasis. Our study sheds light on an emerging hallmark of advanced tumors, which derive benefit from robust nucleocytoplasmic transport.


Assuntos
Neoplasias da Mama , Complexo de Proteínas Formadoras de Poros Nucleares , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Cell Rep ; 38(3): 110268, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045289

RESUMO

Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.


Assuntos
Doença de Alzheimer/fisiopatologia , Vias Neurais/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Anestesia Geral , Animais , Modelos Animais de Doenças , Camundongos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
16.
Nat Methods ; 18(9): 1068-1074, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480152

RESUMO

In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.


Assuntos
Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Animais , Citoplasma/genética , Cinética , Lipopolissacarídeos/farmacologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/fisiologia , Células RAW 264.7 , RNA Mensageiro/genética , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/efeitos dos fármacos , Fatores de Tempo
17.
Cancer Res ; 81(21): 5555-5571, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429328

RESUMO

The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.


Assuntos
Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Eosinófilos/imunologia , Neoplasias Pulmonares/imunologia , Receptores CCR3/fisiologia , Microambiente Tumoral , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Rep ; 34(9): 108787, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657365

RESUMO

Glioblastoma (GBM) is the most aggressive form of glioma, with poor prognosis exhibited by most patients, and a median survival time of less than 2 years. We assemble a cohort of 87 GBM patients whose survival ranges from less than 3 months and up to 10 years and perform both high-resolution mass spectrometry proteomics and RNA sequencing (RNA-seq). Integrative analysis of protein expression, RNA expression, and patient clinical information enables us to identify specific immune, metabolic, and developmental processes associated with survival as well as determine whether they are shared between expression layers or are layer specific. Our analyses reveal a stronger association between proteomic profiles and survival and identify unique protein-based classification, distinct from the established RNA-based classification. By integrating published single-cell RNA-seq data, we find a connection between subpopulations of GBM tumors and survival. Overall, our findings establish proteomic heterogeneity in GBM as a gateway to understanding poor survival.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Proteoma , Proteômica , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Análise por Conglomerados , Biologia Computacional , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Análise de Sobrevida , Espectrometria de Massas em Tandem , Fatores de Tempo , Adulto Jovem
19.
Clin Cancer Res ; 27(7): 2074-2086, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446566

RESUMO

PURPOSE: Treatment of metastatic melanoma has dramatically improved in recent years, thanks to the development of immunotherapy and BRAF-MEK-targeted therapies. However, these developments revealed marked heterogeneity in patient response, which is yet to be fully understood. In this work, we aimed to associate the proteomic profiles of metastatic melanoma with the patient clinical information, to identify protein correlates with metastatic location and prior treatments. EXPERIMENTAL DESIGN: We performed mass spectrometry-based proteomic analysis of 185 metastatic melanoma samples and followed with bioinformatics analysis to examine the association of metastatic location, BRAF status, survival, and immunotherapy response with the tumor molecular profiles. RESULTS: Bioinformatics analysis showed a high degree of functional heterogeneity associated with the site of metastasis. Lung metastases presented higher immune-related proteins, and higher mitochondrial-related processes, which were shown previously to be associated with better immunotherapy response. In agreement, epidemiological analysis of data from the National Cancer Database showed improved response to anti-programmed death 1, mainly in patients with lung metastasis. Focus on lung metastases revealed prognostic and molecular heterogeneity and highlighted potential tissue-specific biomarkers. Analysis of the BRAF mutation status and prior treatments with MAPK inhibitors proposed the molecular basis of the effect on immunotherapy response and suggested coordinated combination of immunotherapy and targeted therapy may increase treatment efficacy. CONCLUSIONS: Altogether, the proteomic data provided novel molecular determinants of critical clinical features, including the effects of sequential treatments and metastatic locations. These results can be the basis for development of site-specific treatments toward treatment personalization.


Assuntos
Neoplasias Pulmonares/secundário , Melanoma/tratamento farmacológico , Proteômica/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/genética , Melanoma/patologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Terapia de Alvo Molecular , Mutação , Especificidade de Órgãos , Proteínas Proto-Oncogênicas B-raf/genética
20.
Cancer Res ; 81(6): 1443-1456, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33500247

RESUMO

Cancer-specific metabolic phenotypes and their vulnerabilities represent a viable area of cancer research. In this study, we explored the association of breast cancer subtypes with different metabolic phenotypes and identified isocitrate dehydrogenase 2 (IDH2) as a key player in triple-negative breast cancer (TNBC) and HER2. Functional assays combined with mass spectrometry-based analyses revealed the oncogenic role of IDH2 in cell proliferation, anchorage-independent growth, glycolysis, mitochondrial respiration, and antioxidant defense. Genome-scale metabolic modeling identified phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) as the synthetic dosage lethal (SDL) partners of IDH2. In agreement, CRISPR-Cas9 knockout of PHGDH and PSAT1 showed the essentiality of serine biosynthesis proteins in IDH2-high cells. The clinical significance of the SDL interaction was supported by patients with IDH2-high/PHGDH-low tumors, who exhibited longer survival than patients with IDH2-high/PHGDH-high tumors. Furthermore, PHGDH inhibitors were effective in treating IDH2-high cells in vitro and in vivo. Altogether, our study creates a new link between two known cancer regulators and emphasizes PHGDH as a promising target for TNBC with IDH2 overexpression. SIGNIFICANCE: These findings highlight the metabolic dependence of IDH2 on the serine biosynthesis pathway, adding an important layer to the connection between TCA cycle and glycolysis, which can be translated into novel targeted therapies.


Assuntos
Isocitrato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Serina/biossíntese , Neoplasias de Mama Triplo Negativas/patologia , Animais , Mama/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Metabolômica , Camundongos , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/genética , Proteômica , Mutações Sintéticas Letais , Transaminases/genética , Transaminases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Efeito Warburg em Oncologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...