Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1308686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375032

RESUMO

Introduction: Somatostatin analogues (SSAs) are commonly used in the treatment of hormone hypersecretion in neuroendocrine tumors (NETs), however the extent to which they inhibit proliferation is much discussed. Objective: We studied the antiproliferative effects of novel SSA lanreotide in bronchopulmonary NETs (BP-NETs). We focused on assessing whether pretreating cells with inhibitors for phosphatidylinositol 3-kinase (PI3K) and mammalian target for rapamycin (mTOR) could enhance the antiproliferative effects of lanreotide. Methods: BP-NET cell lines NCI-H720 and NCI-H727 were treated with PI3K inhibitor BYL719 (alpelisib), mTOR inhibitor everolimus and SSA lanreotide to determine the effect on NET differentiation markers, cell survival, proliferation and alterations in cancer-associated pathways. NT-3 cells, previously reported to express somatostatin receptors (SSTRs) natively, were used as control for SSTR expression. Results: SSTR2 was upregulated in NCI-H720 and NT-3 cells upon treatment with BYL719. Additionally, combination treatment consisting of BYL719 and everolimus plus lanreotide tested in NCI-H720 and NCI-H727 led to diminished cell proliferation in a dose-dependent manner. Production of proteins activating cell death mechanisms was also induced. Notably, a multiplexed gene expression analysis performed on NCI-H720 revealed that BYL719 plus lanreotide had a stronger effect on the downregulation of mitogens than lanreotide alone. Discussion/Conclusion: We report a widespread analysis of changes in BP-NET cell lines at the genetic/protein expression level in response to combination of lanreotide with pretreatment consisting of BYL719 and everolimus. Interestingly, SSTR expression reinduction could be exploited in therapeutic and diagnostic applications. The overall results of this study support the evaluation of combination-based therapies using lanreotide in preclinical studies to further increase its antiproliferative effect and ultimately facilitate its use in high-grade tumors.

2.
Neuroendocrinology ; 107(1): 1-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28910819

RESUMO

BACKGROUND/AIMS: The tumor suppressor p53 is rarely mutated in gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) but they frequently show a strong expression of negative regulators of p53, rendering these tumors excellent targets for a p53 recovery therapy. Therefore, we analyzed the mechanisms of a p53 recovery therapy on intestinal neuroendocrine tumors in vitro and in vivo. METHODS: By Western blot and immunohistochemistry, we found that in GEP-NEN biopsy material overexpression of MDM2 was present in intestinal NEN. Therefore, we analyzed the effect of a small-molecule inhibitor, nutlin-3a, in p53 wild-type and mutant GEP-NEN cell lines by proliferation assay, flow cytometry, immunofluorescence, Western blot, and by multiplex gene expression analysis. Finally, we analyzed the antitumor effect of nutlin-3a in a xenograft mouse model in vivo. During the study, the tumor volume was determined. RESULTS: The midgut wild-type cell line KRJ-I responded to the treatment with cell cycle arrest and apoptosis. By gene expression analysis, we could demonstrate that nutlins reactivated an antiproliferative p53 response. KRJ-I-derived xenograft tumors showed a significantly decreased tumor growth upon treatment with nutlin-3a in vivo. Furthermore, our data suggest that MDM2 also influences the expression of the oncogene FOXM1 in a p53-independent manner. Subsequently, a combined treatment of nutlin-3a and cisplatin (as chemoresistance model) resulted in synergistically enhanced antiproliferative effects. CONCLUSION: In summary, MDM2 overexpression is a frequent event in p53 wild-type intestinal neuroendocrine neoplasms and therefore recovery of a p53 response might be a novel personalized treatment approach in these tumors.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Neoplasias Intestinais/patologia , Tumores Neuroendócrinos/patologia , Piperazinas/farmacologia , Adulto , Idoso , Animais , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...