Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 5(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31996485

RESUMO

Hepatic inflammasome activation is considered a major contributor to liver fibrosis in NASH. Apoptosis signal-regulating kinase 1 (ASK1) is an apical mitogen-activated protein kinase that activates hepatic JNK and p38 to promote apoptosis, inflammation, and fibrosis. The aim of the current study was to investigate whether pharmacologic inhibition of ASK1 could attenuate hepatic fibrosis driven by inflammasome activation using gain-of-function NOD-like receptor protein 3 (Nlrp3) mutant mice. Tamoxifen-inducible Nlrp3 knock-in (Nlrp3A350V/+CreT-KI) mice and WT mice were administered either control chow diet or diet containing the selective ASK1 inhibitor GS-444217 for 6 weeks. Livers of Nlrp3-KI mice had increased inflammation, cell death, and fibrosis and increased phosphorylation of ASK1, p38, and c-Jun. GS-444217 reduced ASK1 pathway activation, liver cell death, and liver fibrosis. ASK1 inhibition resulted in a significant downregulation of genes involved in collagen production and extracellular matrix deposition, as well as in a reduced hepatic TNF-α expression. ASK1 inhibition also directly reduced LPS-induced gene expression of Collagen 1A1 (Col1a1) in hepatic stellate cells isolated from Nlrp3-KI mice. In conclusion, ASK1 inhibition reduced liver cell death and fibrosis downstream of inflammatory signaling induced by NLRP3. These data provide mechanistic insight into the antifibrotic mechanisms of ASK1 inhibition.


Assuntos
Morte Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cirrose Hepática/metabolismo , Fígado/lesões , Fígado/metabolismo , MAP Quinase Quinase Quinase 5/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Inibidores Enzimáticos/administração & dosagem , Feminino , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cirrose Hepática/patologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Z Gastroenterol ; 57(7): 871-882, 2019 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-31288283

RESUMO

Along with the increasing prevalence of obesity, metabolic syndrome and type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) is rapidly increasing and poses a major challenge for gastroenterologists. Many studies have demonstrated that the microbiome is closely associated with the progression of nutrition-related diseases, especially of fatty liver disease. Changes in the quantity and quality of the intestinal flora, commonly referred to as dysbiosis, result in altered food metabolism, increased permeability of the intestinal barrier ("leaky gut") and consecutive inflammatory processes in the liver. This favors both the progression of obesity and metabolic disorders as well as NAFLD towards non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Important molecular mechanisms include microbial metabolites, microbial and endogenous signaling substances (so-called PAMPs/DAMPs) as well as bile acids. Essential cellular mechanisms include immune cells in the gut and liver, especially macrophages and Kupffer cells, as well as intestinal epithelial cells and hepatocytes as central regulators of metabolism. In this review article, we briefly summarize the relevant species of the human microbiome, describe the microbial analytics, explain the most important molecular relationships between microbiome and NAFLD/NASH, and finally the opportunities and challenges of microbiome-modulating therapy for the treatment of fatty liver disease.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Microbiota , Hepatopatia Gordurosa não Alcoólica/microbiologia , Progressão da Doença , Humanos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica/patologia
3.
JCI Insight ; 4(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674727

RESUMO

Polypropylene meshes that are commonly used for inguinal hernia repair may trigger granulomatous foreign body reactions. Here, we show that asymptomatic patients display mesh-associated inflammatory granulomas long after surgery, which are dominated by monocyte-derived macrophages expressing high levels of inflammatory activation markers. In mice, mesh implantation by the onlay technique induced rapid and strong myeloid cell accumulation, without substantial attenuation for up to 90 days. Myeloid cells segregated into distinct macrophage subsets with separate spatial distribution, activation profiles, and functional properties, showing a stable inflammatory phenotype in the tissue surrounding the biomaterial and a mixed, wound-healing phenotype in the surrounding stromal tissue. Protein mass spectrometry confirmed the inflammatory nature of the foreign body reaction, as characterized by cytokines, complement activation, and matrix-modulating factors. Moreover, immunoglobulin deposition increased over time around the implant, arguing for humoral immune responses in association with the cell-driven inflammation. Intravital multiphoton microscopy revealed a high motility and continuous recruitment of myeloid cells, which is partly dependent on the chemokine receptor CCR2. CCR2-dependent macrophages are particular drivers of fibroblast proliferation. Thus, our work functionally characterizes myeloid cell-dependent inflammation following mesh implantation, thereby providing insights into the dynamics and mechanisms of foreign body reactions to implanted biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...