Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1700, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703891

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS.


Assuntos
Senilidade Prematura/tratamento farmacológico , Instabilidade Genômica/efeitos dos fármacos , Hidrazonas/farmacologia , Acetiltransferase N-Terminal A/antagonistas & inibidores , Progéria/tratamento farmacológico , Tiazóis/farmacologia , Senilidade Prematura/genética , Senilidade Prematura/mortalidade , Senilidade Prematura/patologia , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Modelos Animais de Doenças , Feminino , Instabilidade Genômica/genética , Humanos , Hidrazonas/uso terapêutico , Estimativa de Kaplan-Meier , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferases N-Terminal , Progéria/genética , Progéria/mortalidade , Progéria/patologia , Tiazóis/uso terapêutico
2.
Sci Rep ; 8(1): 6161, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670134

RESUMO

Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.


Assuntos
Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , Testes Genéticos , Estudo de Associação Genômica Ampla , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Humanos , Camundongos , Modelos Moleculares , Mutação , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Conformação Proteica
3.
EMBO Rep ; 18(6): 1000-1012, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28389464

RESUMO

Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.


Assuntos
Camptotecina/farmacologia , Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Benzamidas/farmacologia , Camptotecina/metabolismo , Proteínas de Ciclo Celular , Dano ao DNA , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Naftóis/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 34(11): 1509-22, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25899817

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.


Assuntos
Reparo do DNA/fisiologia , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Cancer Res ; 74(5): 1588-97, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24419086

RESUMO

The discovery of chromosomal translocations in leukemia/lymphoma and sarcomas presaged a widespread discovery in epithelial tumors. With the advent of new-generation whole-genome sequencing, many consistent chromosomal abnormalities have been described together with putative driver and passenger mutations. The multiple genetic changes required in mouse models to assess the interrelationship of abnormalities and other mutations are severe limitations. Here, we show that sequential gene targeting of embryonic stem cells can be used to yield progenitor cells to generate chimeric offspring carrying all the genetic changes needed for cell-specific cancer. Illustrating the technology, we show that MLL-ENL fusion is sufficient for lethal leukocytosis and proof of genome integrity comes from germline transmission of the sequentially targeted alleles. This accelerated technology leads to a reduction in mouse numbers (contributing significantly to the 3Rs), allows fluorescence tagging of cancer-initiating cells, and provides a flexible platform for interrogating the interaction of chromosomal abnormalities with mutations.


Assuntos
Marcação de Genes/métodos , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Translocação Genética/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Aberrações Cromossômicas , Células-Tronco Embrionárias/metabolismo , Humanos , Leucocitose/genética , Leucocitose/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...