Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184347

RESUMO

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

2.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095639

RESUMO

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

3.
Phys Rev E ; 102(2-1): 023209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942382

RESUMO

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution T_{e}(r,z). The results indicate that the magnetic field increases T_{e}, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

4.
Nat Commun ; 9(1): 280, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348402

RESUMO

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

5.
Rev Sci Instrum ; 86(4): 043504, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933859

RESUMO

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

6.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375714

RESUMO

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

7.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375715

RESUMO

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

8.
Rev Sci Instrum ; 85(4): 043305, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784600

RESUMO

An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

9.
Phys Rev Lett ; 110(4): 044802, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166169

RESUMO

Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 10(10) n/sr. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.

10.
Rev Sci Instrum ; 82(6): 063113, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721680

RESUMO

We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments.

11.
Phys Rev Lett ; 106(23): 235002, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770512

RESUMO

High-irradiance short-pulse lasers incident on solid density thin foils provide high-energy, picosecond-duration, and monochromatic K(α) x-ray sources, but with limited conversion efficiency ϵ of laser energy into K(α) x-ray energy. A novel two-stage target concept is proposed that utilizes ultrahigh-contrast laser interactions with primary ultrathin foils in order to efficiently generate and transport in large quantities only the most effective K(α)-producing high-energy electrons into secondary x-ray converter foils. Benchmarked simulations with no free numerical parameters indicate an ϵ enhancement greater than tenfold over conventional single targets may be possible.

12.
Rev Sci Instrum ; 80(3): 033301, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334914

RESUMO

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.

13.
Rev Sci Instrum ; 79(9): 093306, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044406

RESUMO

This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

14.
Rev Sci Instrum ; 79(10): 10E913, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044568

RESUMO

A streaked radiography diagnostic has been proposed as a technique to determine the ablator mass remaining in an inertial confinement fusion ignition capsule at peak velocity. This instrument, the "HXRI-5," has been designed to fit within a National Ignition Facility Diagnostic Instrument Manipulator. The HXRI-5 will be built at Sandia National Laboratories (SNL), and initial testing will be done at the SNL Z-Beamlet Facility. In this paper, we will describe the National Ignition Campaign requirements for this diagnostic, the instrument design, and the planned test experiments.

15.
Phys Rev Lett ; 101(5): 055004, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764401

RESUMO

This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems.

16.
Phys Rev Lett ; 94(4): 045004, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783566

RESUMO

The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (approximately 1-6 x 10(19) W/cm2) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface acceleration produces higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. Our observations are well reproduced by realistic particle-in-cell simulations, and we predict optimal criteria for future applications.

17.
Phys Rev Lett ; 92(20): 204801, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15169357

RESUMO

The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.

18.
Phys Rev Lett ; 91(25): 255002, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754121

RESUMO

The evolution of laser-generated MeV, MA electron beams propagating through conductors and insulators has been studied by comparing measurement and modeling of the distribution of MeV protons that are sheath accelerated by the propagated electrons. We find that electron flow through metals is uniform and can be laser imprinted, whereas propagation through insulators induces spatial disruption of the fast electrons. Agreement is found with material dependent modeling.

19.
Phys Rev Lett ; 89(8): 085002, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12190475

RESUMO

Collimated jets of carbon and fluorine ions up to 5 MeV/nucleon ( approximately 100 MeV) are observed from the rear surface of thin foils irradiated with laser intensities of up to 5 x 10 (19)W/cm(2). The normally dominant proton acceleration could be surpressed by removing the hydrocarbon contaminants by resistive heating. This inhibits screening effects and permits effective energy transfer and acceleration of other ion species. The acceleration dynamics and the spatiotemporal distributions of the accelerating E fields at the rear surface of the target are inferred from the detailed spectra.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056402, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12513602

RESUMO

Order-of-magnitude anomalously high intensities for two-electron (dielectronic) satellite transitions, originating from the He-like 2s(2) 1S0 and Li-like 1s2s(2) (2)S(1/2) autoionizing states of silicon, have been observed in dense laser-produced plasmas at different laboratories. Spatially resolved, high-resolution spectra and plasma images show that these effects are correlated with an intense emission of the He-like 1s3p 1P-1s(2) 1S lines, as well as the K(alpha) lines. A time-dependent, collisional-radiative model, allowing for non-Maxwellian electron-energy distributions, has been developed for the determination of the relevant nonequilibrium level populations of the silicon ions, and a detailed analysis of the experimental data has been carried out. Taking into account electron density and temperature variations, plasma optical-depth effects, and hot-electron distributions, the spectral simulations are found to be not in agreement with the observations. We propose that highly stripped target ions (e.g., bare nuclei or H-like 1s ground-state ions) are transported into the dense, cold plasma (predominantly consisting of L- and M-shell ions) near the target surface and undergo single- and double-electron charge-transfer processes. The spectral simulations indicate that, in dense and optically thick plasmas, these charge-transfer processes may lead to an enhancement of the intensities of the two-electron transitions by up to a factor of 10 relative to those of the other emission lines, in agreement with the spectral observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...