Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7431, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460637

RESUMO

Post-translational modifications (PTMs) regulate various aspects of protein function, including degradation. Mass spectrometric methods relying on pulsed metabolic labeling are popular to quantify turnover rates on a proteome-wide scale. Such data have traditionally been interpreted in the context of protein proteolytic stability. Here, we combine theoretical kinetic modeling with experimental pulsed stable isotope labeling of amino acids in cell culture (pSILAC) for the study of protein phosphorylation. We demonstrate that metabolic labeling combined with PTM-specific enrichment does not measure effects of PTMs on protein stability. Rather, it reveals the relative order of PTM addition and removal along a protein's lifetime-a fundamentally different metric. This is due to interconversion of the measured proteoform species. Using this framework, we identify temporal phosphorylation sites on cell cycle-specific factors and protein complex assembly intermediates. Our results thus allow tying PTMs to the age of the modified proteins.


Assuntos
Peptídeos , Processamento de Proteína Pós-Traducional , Fosforilação , Proteólise , Peptídeo Hidrolases
2.
Mol Syst Biol ; 17(8): e10189, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370382

RESUMO

Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness-costly metabolites through natural selection. In this strategy, metabolic cross-feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co-evolved wild-type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B-group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange.


Assuntos
Laboratórios , Proteômica , Técnicas de Cocultura , Saccharomyces cerevisiae/genética , Simbiose/genética
3.
Stat Appl Genet Mol Biol ; 18(4)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31348764

RESUMO

Finite mixture models are widely used in the life sciences for data analysis. Yet, the calibration of these models to data is still challenging as the optimization problems are often ill-posed. This holds for censored and uncensored data, and is caused by symmetries and other types of non-identifiabilities. Here, we discuss the problem of parameter estimation and model selection for finite mixture models from a theoretical perspective. We provide a review of the existing literature and illustrate the ill-posedness of the calibration problem for mixtures of uniform distributions and mixtures of normal distributions. Furthermore, we assess the effect of interval censoring on this estimation problem. Interestingly, we find that a proper treatment of censoring can facilitate the estimation of the number of mixture components compared to inference from uncensored data, which is an at first glance surprising result. The aim of the manuscript is to raise awareness of challenges in the calibration of finite mixture models and to provide an overview about available techniques.


Assuntos
Modelos Estatísticos , Interpretação Estatística de Dados , Funções Verossimilhança , Distribuição Normal
4.
Bioinformatics ; 32(16): 2464-72, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153627

RESUMO

MOTIVATION: The statistical analysis of single-cell data is a challenge in cell biological studies. Tailored statistical models and computational methods are required to resolve the subpopulation structure, i.e. to correctly identify and characterize subpopulations. These approaches also support the unraveling of sources of cell-to-cell variability. Finite mixture models have shown promise, but the available approaches are ill suited to the simultaneous consideration of data from multiple experimental conditions and to censored data. The prevalence and relevance of single-cell data and the lack of suitable computational analytics make automated methods, that are able to deal with the requirements posed by these data, necessary. RESULTS: We present MEMO, a flexible mixture modeling framework that enables the simultaneous, automated analysis of censored and uncensored data acquired under multiple experimental conditions. MEMO is based on maximum-likelihood inference and allows for testing competing hypotheses. MEMO can be applied to a variety of different single-cell data types. We demonstrate the advantages of MEMO by analyzing right and interval censored single-cell microscopy data. Our results show that an examination of censoring and the simultaneous consideration of different experimental conditions are necessary to reveal biologically meaningful subpopulation structures. MEMO allows for a stringent analysis of single-cell data and enables researchers to avoid misinterpretation of censored data. Therefore, MEMO is a valuable asset for all fields that infer the characteristics of populations by looking at single individuals such as cell biology and medicine. AVAILABILITY AND IMPLEMENTATION: MEMO is implemented in MATLAB and freely available via github (https://github.com/MEMO-toolbox/MEMO). CONTACTS: eva-maria.geissen@ist.uni-stuttgart.de or nicole.radde@ist.uni-stuttgart.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Modelos Estatísticos , Humanos , Probabilidade
5.
Nat Cell Biol ; 15(11): 1328-39, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24161933

RESUMO

The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Transdução de Sinais , Fuso Acromático , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...