Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065131

RESUMO

The Large Plasma Device (LAPD) at UCLA (University of California, Los Angeles) produces an 18 m long, magnetized, quiescent, and uniform plasma at a high repetition rate to enable studies of fundamental plasma physics. Here, we report on a major upgrade to the LAPD plasma source that allows for more robust operation and significant expansion of achievable plasma parameters. The original plasma source made use of a heated barium oxide (BaO) coated nickel sheet as an electron emitter. This source had a number of drawbacks, including a limited range of plasma density (≲4.0 × 1012 cm-3), a limited discharge duration (∼10 ms), and susceptibility to poisoning following oxygen exposure. The new plasma source utilizes a 38 cm diameter lanthanum hexaboride (LaB6) cathode, which has a significantly higher emissivity, allowing for a much larger discharge power density, and is robust to exposure to air. Peak plasma density of up to 3.0 × 1013 cm-33 in helium gas has been achieved. The typical operating pressure is ∼10-5 Torr, while dynamic pressure can be achieved through the gas-puffing technique. Discharges as long as 70 ms have been produced, enabling a variety of long-time-scale studies of processes, such as turbulent particle transport. The new source has been in continuous operation for 14 months, having survived air leaks, power outages that led to rapid temperature changes on the cathode and heater, and planned machine openings. We describe the design, construction, and initial operation of this novel new large-area LaB6 plasma source.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26651639

RESUMO

Measurements of the structure of the electrostatic fields produced by the expansion of a laser-produced plasma into a background magnetized plasma are presented. The three-dimensional measurements of the electrostatic field are made using an emissive probe that measures the time-varying plasma potential on two orthogonal planes, one across and one containing the background magnetic field. The inductive electric field is also calculated from probe measurements of the time-varying magnetic fields. Deviations from local charge neutrality at the level of 10(-4) generate a radial electrostatic field with peak strength an order of magnitude larger than the corresponding inductive field. The electrostatic energy density near full expansion is over an order of magnitude larger than that of the induced azimuthal electric field. These measurements show that electrostatic fields must be included in theoretical and computational models of collisionless coupling in magnetized point explosions of laser-produced plasmas and their relation to similar phenomena such as magnetospheric chemical releases.

3.
Phys Rev Lett ; 108(10): 105002, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463416

RESUMO

Laboratory observations of enhanced loss of fast electrons trapped in a magnetic mirror geometry irradiated by shear Alfvén waves (SAW) are reported. A population of runaway electrons generated by second harmonic electron-cyclotron-resonance heating, as evidenced by the production of hard x rays with energy up to 3 MeV, is subjected to SAW launched with a rotating magnetic field antenna. It is observed that the SAW dramatically affect the trapped fast electrons and scatter them out of the magnetic mirror despite any obvious resonance. The results could have implications on the techniques of artificial reduction of energetic electrons in the inner radiation belt.

4.
Phys Rev Lett ; 105(11): 115001, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867576

RESUMO

Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λDe) enabled the measurement of positive potential pulses with half-widths 4 to 25λDe and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

5.
Phys Rev Lett ; 105(7): 075001, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868051

RESUMO

The time-dependent argon-ion velocity distribution function above and within the plasma sheath of an rf-biased substrate has been measured using laser-induced fluorescence in a commercial plasma processing tool. Discharge parameters were such that the 2.2 MHz rf-bias period was on the order of the ion transit time through the sheath (τ{ion}/τ{rf}=0.3). This work embodies the first time-resolved measurement of ion velocity distribution functions within an rf-biased sheath over a large area (30 cm diameter) silicon wafer substrate.

6.
Phys Rev Lett ; 103(10): 105002, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19792321

RESUMO

The concept of quasiseparatrix layers (QSLs) has emerged as a powerful tool to study the connectivity of magnetic field lines undergoing magnetic reconnection in solar flares. Although they have been used principally by the solar physics community until now, QSLs can be employed to shed light on all processes in which reconnection occurs. We present the first application of this theory to an experimental flux rope configuration. The three-dimensional data set acquired in this experiment makes the determination of the QSL possible.

7.
Phys Rev Lett ; 93(10): 105003, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15447410

RESUMO

We report on observations of shear Alfvén waves radiated from a source of small transverse size, and the subsequent radial confinement of wave magnetic field energy within a cylindrical plasma. The radius of confinement lies between the kinetic regime of the bulk plasma and the inertial regime at the plasma edge; this radius is found to be a function of wave frequency. Numerical calculations using kinetic theory predict a zero in the perpendicular group velocity at a radius which varies in accord with the observations. An analytic expression for the perpendicular group velocity (valid for small perpendicular wave numbers) is given in the vicinity of the zero crossing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA