Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(610): eabd8995, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516831

RESUMO

Vitiligo is an autoimmune skin disease characterized by the targeted destruction of melanocytes by T cells. Cytokine signaling between keratinocytes and T cells results in CD8+ T cell infiltration of vitiligo lesions, but the full scope of signals required to coordinate autoimmune responses is not completely understood. We performed single-cell RNA sequencing on affected and unaffected skin from patients with vitiligo, as well as healthy controls, to define the role of each cell type in coordinating autoimmunity during disease progression. We confirmed that type 1 cytokine signaling occupied a central role in disease, but we also found that this pathway was used by regulatory T cells (Tregs) to restrain disease progression in nonlesional skin. We determined that CCL5-CCR5 signaling served as a chemokine circuit between effector CD8+ T cells and Tregs, and mechanistic studies in a mouse model of vitiligo revealed that CCR5 expression on Tregs was required to suppress disease in vivo but not in vitro. CCR5 was not required for Treg recruitment to skin but appeared to facilitate Treg function by properly positioning these cells within the skin. Our data provide critical insights into the pathogenesis of vitiligo and uncover potential opportunities for therapeutic interventions.


Assuntos
RNA Citoplasmático Pequeno , Receptores CCR5 , Linfócitos T Reguladores/imunologia , Vitiligo , Humanos , Receptores CCR5/genética , Análise de Célula Única , Vitiligo/genética , Vitiligo/imunologia
2.
J Med Entomol ; 53(3): 653-659, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27032417

RESUMO

Pediculosis is a prevalent parasitic infestation of humans, which is increasing due, in part, to the selection of lice resistant to either the pyrethrins or pyrethroid insecticides by the knockdown resistance (kdr) mechanism. To determine the extent and magnitude of the kdr-type mutations responsible for this resistance, lice were collected from 138 collection sites in 48 U.S. states from 22 July 2013 to 11 May 2015 and analyzed by quantitative sequencing. Previously published data were used for comparisons of the changes in the frequency of the kdr-type mutations over time. Mean percent resistance allele frequency (mean % RAF) values across the three mutation loci were determined from each collection site. The overall mean % RAF (±SD) for all analyzed lice was 98.3 ± 10%. 132/138 sites (95.6%) had a mean % RAF of 100%, five sites (3.7%) had intermediate values, and only a single site had no mutations (0.0%). Forty-two states (88%) had a mean % RAF of 100%. The frequencies of kdr-type mutations did not differ regardless of the human population size that the lice were collected from, indicating a uniformly high level of resistant alleles. The loss of efficacy of the Nix formulation (Prestige Brand, Tarrytown, NY) from 1998 to 2013 was correlated to the increase in kdr-type mutations. These data provide a plausible reason for the decrease in the effectiveness of permethrin in the Nix formulation, which is the parallel increase of kdr-type mutations in lice over time.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Infestações por Piolhos/parasitologia , Pediculus/efeitos dos fármacos , Pediculus/genética , Alelos , Animais , Humanos , Mutação , Piretrinas/farmacologia , Estados Unidos
3.
J Med Entomol ; 52(5): 1018-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336243

RESUMO

Human bed bug infestations have dramatically increased worldwide since the mid-1990s. A similar phenomenon was also observed in Israel since 2005, when infestations were reported from all over the country. Two single nucleotide polymorphisms (V419L and L925I) in the bed bug voltage-sensitive sodium channel confer kdr-type resistance to pyrethroids. Using quantitative sequencing (QS), the resistance allele frequencies of Israeli bed bug populations from across the country were determined. Genomic DNA was extracted from samples of 12 populations of bed bugs collected from Israel and DNA fragments containing the V419L or L925I and I936F mutations sites were PCR amplified. The PCR products were analyzed by QS and the nucleotide signal ratios calculated and used to predict the resistance allele frequencies of the unknown populations. Results of the genetic analysis show that resistant nucleotide signals are highly correlated to resistance allele frequencies for both mutations. Ten of the 12 tested populations had 100% of the L925I mutation and 0% of the V419L mutation. One population was heterogeneous for the L925I mutation and had 0% of the V419L mutation and another population was heterogeneous for the V419L mutation and had 100% of the L925I mutation. I936F occurred only at low levels. These results indicate that bed bugs in Israel are genetically resistant to pyrethroids. Thus, pyrethroids should only be used for bed bug management with caution using effective application and careful monitoring procedures. Additionally, new and novel-acting insecticides and nonchemical means of controlling bed bugs should be explored.


Assuntos
Percevejos-de-Cama/genética , Frequência do Gene , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Animais , Percevejos-de-Cama/efeitos dos fármacos , Percevejos-de-Cama/metabolismo , Proteínas de Insetos/metabolismo , Israel , Reação em Cadeia da Polimerase , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Pestic Biochem Physiol ; 121: 107-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047118

RESUMO

4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance.


Assuntos
DDT/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Hidrocarbonetos/metabolismo , Masculino , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...