Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 978: 176767, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909934

RESUMO

Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.

2.
Biomed Pharmacother ; 172: 116201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306846

RESUMO

The treatment of glioblastoma (GBM) faces significant challenges due to the difficulty of delivering drugs through the blood-brain barrier (BBB). Extracellular vesicles (EVs) have emerged as potential carriers for targeted drug delivery to brain tumors. However, their use and distribution in the presence of an intact BBB and their ability to target GBM tissue are still under investigation. This study explored the use of EVs for GBM targeting across the BBB. Canine plasma EVs from healthy dogs and dogs with glioma were isolated, characterized, and loaded with diagnostic agents. Biodistribution studies were conducted in healthy murine models and a novel intranasal model that preserved BBB integrity while initiating early-stage GBM growth. This model assessed EVs' potential for delivering the contrast agent gadoteric acid to intracranial tumors. Imaging techniques, such as bioluminescence and MRI, confirmed EVs' targeting and delivery capabilities thus revealing a selective accumulation of canine glioma-derived EVs in brain tissue under physiological conditions. In the model of brain tumor, MRI experiments demonstrated the ability of EVs to accumulate gadoteric acid within GBM to enhance contrast of the tumoral mass, even when BBB integrity is maintained. This study underscores the potential of EVs derived from glioma for the targeted delivery of drugs to glioblastoma. EVs from dogs with glioma showed capacity to traverse the BBB and selectively accumulate within the brain tumor. Overall, this research represents a foundation for the application of autologous EVs to precision glioblastoma treatment, addressing the challenge of BBB penetration and targeting specificity in brain cancer therapy.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Cães , Animais , Camundongos , Glioblastoma/diagnóstico por imagem , Barreira Hematoencefálica , Distribuição Tecidual , Neoplasias Encefálicas/diagnóstico por imagem , Quelantes , Meios de Contraste
3.
Sci Rep ; 14(1): 3371, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337010

RESUMO

Preclinical and clinical data indicate that the 5-lipoxygenase pathway becomes activated in cardiovascular diseases suggesting an important role of CysLTs in atherosclerosis and in its ischemic complications. This study aims to investigate the effects of montelukast, a CysLTR-1 antagonist, in a mouse model of myocardial infarction (MI). C57BL/6N female mice were subjected to coronary artery ligation and received montelukast (10 mg/kg/day, intraperitoneal) or vehicle. Montelukast exerted beneficial effects in the infarcted area, decreasing mRNA expression of inflammatory genes, such Il1ß and Ccl2 (p < 0.05), at 48 h after MI, and reducing infarct size and preventing ischemic wall thinning (p < 0.05) at 4 weeks. Furthermore, montelukast counteracted maladaptive remodelling of whole heart. Indeed, montelukast reduced LV mass (p < 0.05) and remote wall thickening (p < 0.05), and improved cardiac pumping function, as evidenced by increased global ejection fraction (p < 0.01), and regional contractility in infarcted (p < 0.05) and in remote non-infarcted (p < 0.05) myocardium. Finally, montelukast prevented cardiomyocytes hypertrophy (p < 0.05) in remote myocardium, reducing the phosphorylation of GSK3ß, a regulator of hypertrophic pathway (p < 0.05). Our data strongly demonstrate the ability of montelukast to contrast the MI-induced maladaptive conditions, thus sustaining cardiac contractility. The results provide evidences for montelukast "repurposing" in cardiovascular diseases and in particular in myocardial infarction.


Assuntos
Acetatos , Ciclopropanos , Infarto do Miocárdio , Quinolinas , Sulfetos , Remodelação Ventricular , Camundongos , Animais , Feminino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
4.
J Mol Med (Berl) ; 100(1): 23-41, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674004

RESUMO

Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflammation, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, immunoresponse, extracellular vesicles, and microRNAs, are discussed.


Assuntos
Encéfalo , Infarto do Miocárdio , Miocárdio , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830207

RESUMO

Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Miocárdica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Ligantes , Camundongos , Terapia de Alvo Molecular/métodos , Isquemia Miocárdica/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento
6.
J Colloid Interface Sci ; 582(Pt B): 678-700, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911414

RESUMO

HYPOTHESIS: Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS: We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS: The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Animais , Proteínas Sanguíneas , Compostos Férricos , Camundongos , Distribuição Tecidual
7.
Mol Ther ; 29(4): 1439-1458, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309882

RESUMO

Contrasting myelin damage through the generation of new myelinating oligodendrocytes represents a promising approach to promote functional recovery after stroke. Here, we asked whether activation of microglia and monocyte-derived macrophages affects the regenerative process sustained by G protein-coupled receptor 17 (GPR17)-expressing oligodendrocyte precursor cells (OPCs), a subpopulation of OPCs specifically reacting to ischemic injury. GPR17-iCreERT2:CAG-eGFP reporter mice were employed to trace the fate of GPR17-expressing OPCs, labeled by the green fluorescent protein (GFP), after permanent middle cerebral artery occlusion. By microglia/macrophages pharmacological depletion studies, we show that innate immune cells favor GFP+ OPC reaction and limit myelin damage early after injury, whereas they lose their pro-resolving capacity and acquire a dystrophic "senescent-like" phenotype at later stages. Intracerebral infusion of regenerative microglia-derived extracellular vesicles (EVs) restores protective microglia/macrophages functions, limiting their senescence during the post-stroke phase, and enhances the maturation of GFP+ OPCs at lesion borders, resulting in ameliorated neurological functionality. In vitro experiments show that EV-carried transmembrane tumor necrosis factor (tmTNF) mediates the pro-differentiating effects on OPCs, with future implications for regenerative therapies.


Assuntos
Senescência Celular/genética , Bainha de Mielina/genética , Receptores Acoplados a Proteínas G/genética , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Camundongos , Microglia/metabolismo , Microglia/transplante , Oligodendroglia/transplante , Medicina Regenerativa/métodos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/genética
8.
Biochem Pharmacol ; 177: 113894, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142728

RESUMO

Cardiovascular disease remains - despite the development of new drugs, devices, and therapeutic strategies - the leading cause of death and disability worldwide. There is therefore a great need to implement the pharmacological armamentarium, considering also the need to balance the therapeutic and the side effects. Furthermore, the best choice among the drug treatment options and reduction of side effects remain urgent problems for studies of cardiovascular disease. In this context, drug repurposing could be an innovative way and opportunity to extend and improve pharmacological tools. Indeed, applying well-established drugs and compounds to new indications, drug repurposing has already been proven efficient and safe in humans. Furthermore, this approach generates lower costs and needs shorter time for approval than the development of a de novo drug. In the current review, we discuss the main evidence for the repurposing in cardiovascular diseases of drugs approved and marketed for other pathologies by reviewing their mechanisms of action and the results reported in observational and then in randomized studies.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Colchicina/uso terapêutico , Citocinas/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Metformina/uso terapêutico , Metotrexato/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , Xantina Oxidase/antagonistas & inibidores
9.
Biochem Pharmacol ; 177: 113895, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145263

RESUMO

Drug repurposing is a promising way in drug discovery to identify new therapeutic uses -different from the original medical indication- for existing drugs. It has many advantages over traditional approaches to de novo drug discovery, since it can significantly reduce healthcare costs and development timeline. In this review, we discuss the possible repurposing of drugs approved for cardiovascular diseases, such as ß-blockers, angiotensin converting enzyme inhibitors (ACE-Is), angiotensin II receptor blockers (ARBs), statins, aspirin, cardiac glycosides and low-molecular-weight heparins (LMWHs). Indeed, numerous experimental and epidemiological studies have reported promising anti-cancer activities for these drugs. It is worth mentioning, however, that the results of these studies are often controversial and very few data were obtained by controlled prospective clinical trials. Therefore, no final conclusion has yet been reached in this area and no final recommendations can be made. Moreover, ß-blockers, ARBs and statins showed promising results in randomised controlled trials (RCTs) where pathological conditions other than cancer were considered. The results obtained have led or may lead to new indications for these drugs. For each drug or class of drugs, the potential molecular mechanisms of action justifying repurposing, results obtained in vitro and in animal models and data from epidemiological and randomized studies are described.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Síndrome de Marfan/tratamento farmacológico , Transtornos de Enxaqueca/tratamento farmacológico , Micoses/tratamento farmacológico , Neoplasias/tratamento farmacológico , Periodontite/tratamento farmacológico , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Aspirina/uso terapêutico , Glicosídeos Cardíacos/uso terapêutico , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
10.
Pharmacol Res ; 142: 223-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818044

RESUMO

Stroke is one of the main causes of death, neurological dysfunctions or disability in elderly. Neuroprotective drugs have been proposed to improve long-term recovery after stroke, but failed to reach clinical effectiveness. Hence, recent studies suggested that restorative therapies should combine neuroprotection and remyelination. Montelukast, an anti-asthmatic drug, was shown to exert neuroprotection in animal models of CNS injuries, but its ability to affect oligodendrocytes, restoring fiber connectivity, remains to be determined. In this study, we evaluated whether montelukast induces long-term repair by promoting fiber connectivity up to 8 weeks after middle cerebral artery occlusion (MCAo), using different experimental approaches such as in vivo diffusion magnetic resonance imaging (MRI), electrophysiological techniques, ex vivo diffusion tensor imaging (DTI)-based fiber tracking and immunohistochemistry. We found that, in parallel with a reduced evolution of ischemic lesion and atrophy, montelukast increased the DTI-derived axial diffusivity and number of myelin fibers, the density of myelin binding protein (MBP) and the number of GSTpi+ mature oligodendrocytes. Together with the rescue of MCAo-induced impairments of local field potentials in ischemic cortex, the data suggest that montelukast may improve fibers reorganization. Thus, to ascertain whether this effect involved changes of oligodendrocyte precursor cells (OPCs) activation and maturation, we used the reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice that allowed us to trace the fate of OPCs throughout animal's life. Our results showed that montelukast enhanced the OPC recruitment and proliferation at acute phase, and increased their differentiation to mature oligodendrocytes at chronic phase after MCAo. Considering the crosstalk between OPCs and microglia has been widely reported in the context of demyelinating insults, we also assessed microglia activation. We observed that montelukast influenced the phenotype of microglial cells, increasing the number of M2 polarized microglia/macrophages, over the M1 phenotype, at acute phase after MCAo. In conclusion, we demonstrated that montelukast improves fiber re-organization and long-term functional recovery after brain ischemia, enhancing recruitment and maturation of OPCs. The present data suggest that montelukast, an already approved drug, could be "repositioned "as a protective drug in stroke acting also on fiber re-organization.


Assuntos
Acetatos/uso terapêutico , Antiasmáticos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quinolinas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ciclopropanos , Infarto da Artéria Cerebral Média/fisiopatologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Microglia/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Sulfetos
11.
Theranostics ; 8(19): 5400-5418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555554

RESUMO

Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers. Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues. Results: Here we provide evidence that P2RY12 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-11 labeled tracer targeting P2RY12, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient. Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Microglia/imunologia , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Radioisótopos de Carbono/administração & dosagem , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-4/administração & dosagem , Camundongos , Traçadores Radioativos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2Y12/análise , Roedores , Acidente Vascular Cerebral/patologia
12.
Pharmacol Res ; 135: 60-79, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040996

RESUMO

The use of warfarin, the most commonly prescribed oral anticoagulant, is being questioned by clinicians worldwide due to warfarin several limitations (a limited therapeutic window and significant variability in dose-response among individuals, in addition to a potential for drug-drug interactions). Therefore, the need for non-vitamin K antagonist oral anticoagulants (NOACs) with a rapid onset of antithrombotic effects and a predictable pharmacokinetic (PK) and pharmacodynamic (PD) profile led to the approval of five new drugs: the direct factor Xa (F-Xa) inhibitors rivaroxaban, apixaban, edoxaban and betrixaban (newly approved by FDA) and the direct thrombin (factor-IIa) inhibitor dabigatran etexilate. The advantages of NOACs over warfarin are a fixed-dosage, the absence of the need for drug monitoring for changes in anti-coagulation and fewer clinically significant PK and PD drug-drug interactions. NOACs exposure will likely be increased by the administration of strong P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4-inhibitors and may increase the risk of bleeds. On the contrary, P-gp inducers could significantly decrease the NOACs plasma concentration with an associated reduction in their anticoagulant effects. This manuscript gives an overview of NOACs PK profiles and their drug-drug interactions potential. This is meant to be of help to physicians in choosing the best therapeutic approach for their patients.


Assuntos
Anticoagulantes/farmacocinética , Administração Oral , Animais , Interações Medicamentosas , Humanos , Fitoterapia , Inibidores da Agregação Plaquetária/farmacocinética , Vitamina K/antagonistas & inibidores , Varfarina/farmacocinética
13.
Cell Rep ; 23(12): 3501-3511, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29924994

RESUMO

Sex has a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Neuroinflammation is involved in the onset and progression of several neurological diseases, and the fact that estrogens have anti-inflammatory activity suggests that these hormones may be a determinant in the sex-dependent manifestation of brain pathologies. We describe significant differences in the transcriptome of adult male and female microglia, possibly originating from perinatal exposure to sex steroids. Microglia isolated from adult brains maintain the sex-specific features when put in culture or transplanted in the brain of the opposite sex. Female microglia are neuroprotective because they restrict the damage caused by acute focal cerebral ischemia. This study therefore provides insight into a distinct perspective on the mechanisms underscoring a sexual bias in the susceptibility to brain diseases.


Assuntos
Envelhecimento/fisiologia , Microglia/fisiologia , Caracteres Sexuais , Animais , Encéfalo/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Progressão da Doença , Estradiol/sangue , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Microglia/transplante , Fenótipo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Transcriptoma/genética
14.
J Hypertens ; 36(6): 1360-1371, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29470366

RESUMO

OBJECTIVE: Hypertension is a well known risk factor for thrombotic events such as myocardial infarction and stroke. Platelets express tissue factor (TF), the key activator of blood coagulation and thrombus formation. The number of TF-positive platelets increases in pathological conditions characterized by thrombotic complications but whether this occurs in hypertension is unknown. Here we investigated whether platelet TF expression is increased in a hypertensive status through a mechanism acting on megakaryocytes; the phenomenon could be modulated by antihypertensive drug as captopril; angiotensin (AngII) influences platelet TF expression. METHODS: Spontaneously hypertensive stroke prone (SHRSP) rats received standard diet (StD) or a Japanese high-salt permissive diet (JpD). After 3 weeks, JpD animals were randomized to receive captopril or vehicle. Normotensive Wistar Kyoto (WKY) rats were used as controls. Cell-associated TF expression and activity were analyzed by flow cytometry and calibrated automated thrombogram, respectively. RESULTS: Hypertensive StD-SHRSP showed an increased number of TF-positive platelets compared with normotensive WKY. After JpD administration, SHRSP developed severe hypertension and renal damage; the number of TF-positive megakaryocytes significantly increased compared with StD-SHRSP resulting in a higher number of TF-positive platelets with a faster kinetic of thrombin generation. These effects were reverted by captopril. Ex-vivo stimulation of platelets, isolated from normotensive WKY and from healthy individuals, with AngII induced a concentration-dependent increase of surface-associated TF expression. CONCLUSION: The current study shows for the first time that in hypertension the number of TF-positive megakaryocytes increases thus releasing in the circulation more platelets carrying a functionally active TF. AngII stimulates platelets to express TF.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Acidente Vascular Cerebral/metabolismo , Tromboplastina/metabolismo , Animais , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Glia ; 66(5): 1118-1130, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29424466

RESUMO

Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreERT2 xCAG-eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery.


Assuntos
Doenças Desmielinizantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Células Precursoras de Oligodendrócitos/patologia , Fragmentos de Peptídeos , Remielinização/fisiologia , Medula Espinal/metabolismo , Medula Espinal/patologia
16.
J Hypertens ; 36(5): 1129-1146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29278547

RESUMO

OBJECTIVES: The simultaneous presence of cardiac and renal diseases is a pathological condition that leads to increased morbidity and mortality. Several lines of evidence have suggested that lipid dysmetabolism and mitochondrial dysfunction are pathways involved in the pathological processes affecting the heart and kidney. In the salt-loaded spontaneously hypertensive stroke-prone rat (SHRSP), a model of cardiac hypertrophy and nephropathy that shows mitochondrial alterations in the myocardium, we evaluated the cardiorenal effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist that acts by modulating mitochondrial and peroxisomal fatty acid oxidation. METHODS: Male SHRSPs aged 6-7 weeks were divided in three groups: standard diet (n = 6), Japanese diet with vehicle (n = 6), and Japanese diet with fenofibrate 150 mg/kg/day (n = 6) for 5 weeks. Cardiac and renal functions were assessed in vivo by MRI, ultrasonography, and biochemical assays. Mitochondria were investigated by transmission electron microscopy, succinate dehydrogenase (SDH) activity, and gene expression analysis. RESULTS: Fenofibrate attenuated cardiac hypertrophy, as evidenced by histological and MRI analyses, and protected the kidneys, preventing morphological alterations, changes in arterial blood flow velocity, and increases in 24-h proteinuria. Cardiorenal inflammation, oxidative stress, and cellular senescence were also inhibited by fenofibrate. In salt-loaded SHRSPs, we observed severe morphological mitochondrial alterations, reduced SDH activity, and down-regulation of genes regulating mitochondrial fatty-acid oxidation (i.e. PPARα, SIRT3, and Acadm). These changes were counteracted by fenofibrate. In vitro, a direct protective effect of fenofibrate on mitochondrial membrane potential was observed in albumin-stimulated NRK-52E renal tubular epithelial cells. CONCLUSION: The results suggest that the cardiorenal protective effects of fenofibrate in young male salt-loaded SHRSPs are explained by its capacity to preserve mitochondrial function.


Assuntos
Cardiomegalia/prevenção & controle , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Nefropatias/prevenção & controle , Mitocôndrias/metabolismo , Acil-CoA Desidrogenase/genética , Animais , Cardiomegalia/diagnóstico por imagem , Senescência Celular/efeitos dos fármacos , Fenofibrato/uso terapêutico , Expressão Gênica , Hipolipemiantes/uso terapêutico , Inflamação/metabolismo , Inflamação/prevenção & controle , Rim/metabolismo , Nefropatias/metabolismo , Imageamento por Ressonância Magnética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/agonistas , PPAR alfa/genética , Proteinúria/metabolismo , Proteinúria/prevenção & controle , Ratos , Ratos Endogâmicos SHR , Sirtuínas/genética , Cloreto de Sódio na Dieta/administração & dosagem , Succinato Desidrogenase/metabolismo
17.
Mediators Inflamm ; 2017: 2432958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932020

RESUMO

Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation; therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the pathogenesis and progression of atherosclerosis and myocardial infarction.


Assuntos
Doenças Cardiovasculares/metabolismo , Cisteína/metabolismo , Leucotrienos/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Aterosclerose/metabolismo , Humanos , Infarto do Miocárdio/metabolismo
18.
Mediators Inflamm ; 2017: 3454212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607533

RESUMO

Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.


Assuntos
Cisteína/metabolismo , Leucotrienos/metabolismo , Animais , Artrite Reumatoide/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Dermatite Atópica/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo
19.
Cell Death Dis ; 8(6): e2891, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640254

RESUMO

UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Acidente Vascular Cerebral/genética , Proteína Desacopladora 2/genética , Animais , Encéfalo/patologia , Brassica/química , Sobrevivência Celular , Suscetibilidade a Doenças , Fenofibrato/administração & dosagem , Fenofibrato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos SHR , Cloreto de Sódio na Dieta , Acidente Vascular Cerebral/patologia , Proteína Desacopladora 2/metabolismo
20.
Cell Death Dis ; 8(6): e2871, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594400

RESUMO

Following stroke-induced neuronal damage, quiescent oligodendrocyte precursors (OPCs) are activated to proliferate and later to differentiate to myelin-producing cells. GPR17, a receptor transiently expressed on early OPCs, has emerged as a target to implement stroke repair through stimulation of OPC maturation. However, being GPR17 completely downregulated in myelin-producing oligodendrocytes, its actual role in determining the final fate of OPCs after cerebral ischemia is still uncertain. Here, to univocally define the spatiotemporal changes and final fate of GPR17-expressing OPCs, we induced ischemia by middle cerebral artery occlusion (MCAo) in reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice, in which, upon tamoxifen treatment, cells expressing GPR17 become green and traceable for their entire life. Starting from 3 days and up to 2 weeks after MCAo, GFP+ cells markedly accumulated in regions surrounding the ischemic lesion; several of them proliferated, as shown by co-labeling of the DNA synthesis marker 5-Bromo-2'-deoxyuridine (BrdU). Almost all GFP+/BrdU+ cells expressed the OPC early marker neural/glial antigen 2 (NG2), indicating that they were still precursors. Accumulation of GFP+ cells was also because of OPC recruitment from surrounding areas, as suggested in vivo by acquisition of typical features of migrating OPCs, shown in vitro in presence of the chemoattractant PDGF-AA and confirmed by transplantation of GFP+-OPCs in wild-type MCAo mice. Eight weeks after MCAo, only some of these precociously recruited cells had undergone maturation as shown by NG2 loss and acquisition of mature myelinating markers like GSTpi. A pool of recruited GFP+-OPCs was kept at a precursor stage to likely make it available for further insults. Thus, very early after ischemia, GFP+-OPCs proliferate and migrate toward the lesion; however, most of these cells remain undifferentiated, suggesting functional roles other than myelination.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Células-Tronco/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Oligodendroglia/patologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores Acoplados a Proteínas G/genética , Células-Tronco/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...