Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 181: 110516, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303458

RESUMO

The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. Cupriavidus necator DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore C. necator DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.

2.
Waste Manag ; 170: 75-81, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552928

RESUMO

Wood waste is a valuable material that could constitute an abundant and inexpensive source for the production of new materials the recovery of energy. In Europe, about 46% of wood waste is recycled to particleboard and fiberboard, while the other fraction is incinerated. However, a considerable quantity of wood waste shows potential for its transformation into value-added products due to its compositional quality. In this work, wood waste collected at a mechanical treatment plant underwent organosolv treatment to produce a cellulose pulp suitable for manufacturing containerboard. Three variables (temperature, acid concentration, and ethanol concentration) were investigated to find an optimal solution to produce wood pulp by means of Design of Experiment. Wood waste was microwave-heated at 160 °C for 15 min using an acidified ethanol-water solution (2% w/w H2SO4 and 0.8 w/w ethanol concentration), producing pulp with an average cellulose content of 76% where 93% of initial cellulose was retained. Thanks to a one-pot approach, ethanol was totally recovered, 62% of initial lignin was precipitated, and 20 g/l of hemicellulose-derived sugars solution was obtained. Finally, three wood waste samples collected in different periods of the year yielded comparable outcomes, suggesting a good reproducibility of the organosolv process. ANOVA test with a significance level of 0.01 showed a p-value of 0.029 and 0.235 for cellulose content and cellulose recovery, respectively. This study paves the way for an industrial symbiosis between recycling centers and paper mills located in the same territory.

3.
Biotechnol Biofuels ; 11: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796088

RESUMO

BACKGROUND: Some lignocellulosic biomass feedstocks occur in Mediterranean Countries. They are still largely unexploited and cause considerable problems due to the lack of cost-effective harvesting, storage and disposal technologies. Recent studies found that some basidiomycetous yeasts are able to accumulate high amount of intracellular lipids for biorefinery processes (i.e., biofuels and biochemicals). Accordingly, the above biomass feedstocks could be used as carbon sources (after their pre-treatment and hydrolysis) for lipid accumulation by oleaginous yeasts. RESULTS: Cardoon stalks, stranded driftwood and olive tree pruning residues were pre-treated with steam-explosion and enzymatic hydrolysis for releasing free mono- and oligosaccharides. Lipid accumulation tests were performed at two temperatures (20 and 25 °C) using Leucosporidium creatinivorum DBVPG 4794, Naganishia adeliensis DBVPG 5195 and Solicoccozyma terricola DBVPG 5870. S. terricola grown on cardoon stalks at 20 °C exhibited the highest lipid production (13.20 g/l), a lipid yield (28.95%) close to the maximum theoretical value and a lipid composition similar to that found in palm oil. On the contrary, N. adeliensis grown on stranded driftwood and olive tree pruning residues exhibited a lipid composition similar to those of olive and almonds oils. A predictive evaluation of the physical properties of the potential biodiesel obtainable by lipids produced by tested yeast strains has been reported and discussed. CONCLUSIONS: Lipids produced by some basidiomycetous yeasts grown on Mediterranean lignocellulosic biomass feedstocks could be used as supplementary sources of oils for producing biofuels and biochemicals.

4.
Waste Manag ; 73: 496-503, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28579143

RESUMO

A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m3 for an equivalence ratio (ER) equal to 0.2.


Assuntos
Aves Domésticas , Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Fenômenos Químicos , Gases , Itália
5.
Appl Biochem Biotechnol ; 174(1): 156-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25030294

RESUMO

The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast "red ethanol". It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.


Assuntos
Biomassa , Celulase/química , Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vapor , Madeira/química , Hidrólise , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA