Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(16): 162501, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723594

RESUMO

We report an improved measurement of the free neutron lifetime τ_{n} using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38×10^{6} surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ_{n} from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ_{n} measurements and by performing a global likelihood fit to all data while self-consistently incorporating the ß-decay lifetime. Both techniques achieve consistent results and find a value τ_{n}=877.75±0.28_{stat}+0.22/-0.16_{syst} s. With this sensitivity, neutron lifetime experiments now directly address the impact of recent refinements in our understanding of the standard model for neutron decay.

2.
Phys Rev Lett ; 124(8): 081803, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167372

RESUMO

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{n}=(0.0±1.1_{stat}±0.2_{sys})×10^{-26} e.cm.

3.
Phys Rev Lett ; 121(2): 022505, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085691

RESUMO

Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.

4.
Science ; 360(6389): 627-632, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29731449

RESUMO

The precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/-0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.

5.
Rev Sci Instrum ; 87(10): 105124, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27802718

RESUMO

We propose a basic formula and demonstration for a high-resolution quasi-elastic neutron scattering (QENS) by combining the time-of-flight (TOF) method with Modulation of Intensity by Zero Effort (MIEZE) type neutron spin echo spectroscopy. The MIEZE technique has the potential to develop a unique approach to study on slow dynamics of condensed matter; however, the energy resolution is limited owing to the hypersensitivity of the MIEZE signal contrast to the echo condition, which is strongly affected by the alignment of the instruments and the sample. The narrow allowance of the optimal alignment is a major obstacle to the wide use of this technique. Combining the TOF method with MIEZE (TOF-MIEZE), the hypersensitivity of MIEZE signals is significantly alleviated with a short pulsed beam. This robustness is very useful to optimize experimental alignments and enables accurate measurements of QENS. The experimental results demonstrate the characteristic of the TOF-MIEZE technique and are well described by the formula presented in this study.

6.
Phys Rev Lett ; 112(15): 151105, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785025

RESUMO

We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant ß>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20 µm (95% C.L.).

7.
Artigo em Inglês | MEDLINE | ID: mdl-24730913

RESUMO

We perform classical three-dimensional Monte Carlo simulations of ultracold neutrons scattering through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a vectorial velocity filter for ultracold neutrons. The absorbing-reflecting mirror system proposed allows beams of ultracold neutrons with low angular divergence to be formed. The range of velocity components can be controlled by adjusting the geometric parameters of the system. First experimental tests of its performance are presented. One potential future application is the investigation of transport and scattering dynamics in confined systems downstream of the filter.

8.
Phys Rev Lett ; 112(7): 071101, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579585

RESUMO

Ultracold neutrons (UCNs) can be bound by the potential of terrestrial gravity and a reflecting mirror. The wave function of the bound state has characteristic modulations. We carried out an experiment to observe the vertical distribution of the UCNs above such a mirror at the Institut Laue-Langevin in 2011. The observed modulation is in good agreement with that prediction by quantum mechanics using the Wigner function. The spatial resolution of the detector system is estimated to be 0.7 µm. This is the first observation of gravitationally bound states of UCNs with submicron spatial resolution.

9.
Rev Sci Instrum ; 84(1): 013304, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387639

RESUMO

In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of ~1500 cm(3).

10.
Phys Rev Lett ; 105(18): 181803, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231098

RESUMO

A precise measurement of the neutron decay ß asymmetry A0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A0 = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

11.
Phys Rev Lett ; 103(8): 081602, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792714

RESUMO

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and 199Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b perpendicular < 2 x 10(-20) eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |gn| < 0.3 eV/c2 m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |gn| < 3 x 10(-4) eV/c2 m.

12.
Phys Rev Lett ; 102(1): 012301, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257182

RESUMO

We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.

13.
Phys Rev Lett ; 102(3): 030404, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257330

RESUMO

The geometric phase has been proposed as a candidate for noise resilient coherent manipulation of fragile quantum systems. Since it is determined only by the path of the quantum state, the presence of noise fluctuations affects the geometric phase in a different way than the dynamical phase. We have experimentally tested the robustness of Berry's geometric phase for spin-1/2 particles in a cyclically varying magnetic field. Using trapped polarized ultracold neutrons, it is demonstrated that the geometric phase contributions to dephasing due to adiabatic field fluctuations vanish for long evolution times.

14.
Phys Rev Lett ; 99(26): 262502, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18233572

RESUMO

A measurement of the production of ultracold neutrons from velocity-selected cold neutrons on gaseous and solid deuterium targets is reported. The expected energy dependence for two-particle collisions with well defined neutron and Maxwell-Boltzmann distributed molecular velocities is found for the gas target. The solid target data agree in shape with the phonon density-of-states curve and provide strong evidence for the phonon model including multiphonon excitations.

15.
Phys Rev Lett ; 97(13): 131801, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17026025

RESUMO

An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. The results may be interpreted as an upper limit on the neutron EDM of |d(n)|< 2.9 x 10(-26)e cm (90% C.L.).

16.
Phys Rev Lett ; 95(18): 182502, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16383898

RESUMO

The total scattering cross sections for slow neutrons with energies in the range 100 neV to 3 meV for solid ortho-2H2 at 18 and 5 K, frozen from the liquid, have been measured. The 18 K cross sections are found to be in excellent agreement with theoretical expectations and for ultracold neutrons dominated by thermal up scattering. At 5 K the total scattering cross sections are found to be dominated by the crystal defects originating in temperature induced stress but not deteriorated by temperature cycles between 5 and 10 K.

17.
Phys Rev Lett ; 94(21): 212502, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-16090315

RESUMO

The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-2H2 have been measured. The cross sections for 2H2 gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid 2H(2), we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1 / square root[E'] dependence at low energies for both states. A simple explanation for the liquid 2H2 cross section is offered.

18.
J Res Natl Inst Stand Technol ; 110(3): 185-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308119

RESUMO

A test experiment has shown that the number of ultracold neutrons (UCN) of one polarization state, transmitted through a 100 µm Al foil when placed in a 5 T magnetic field, is greater by 3.8 times. The increased transmission is due to the higher velocity of the UCN passing through the foil.

19.
J Res Natl Inst Stand Technol ; 110(3): 245-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308130

RESUMO

The present paper reports on the detailed studies concerning the neutron spin interference visibility observed after transmitting through multilayer magnetic resonators in a spin echo condition with very cold neutrons from a high flux reactor. The observed visibility of the interference between upward and downward spin components perpendicular to the Larmor precession plane of the neutron spin are compared with the numerical simulations in the plane wave theory and also in the Schrödinger wave-packet model. The comparison revealed the instructive characteristic features of obvious additional visibility decrease observed in the interference between the tunnelling and refractive transmissions of each spin components in a single as well as a couple of multilayer magnetic resonators.

20.
J Res Natl Inst Stand Technol ; 110(3): 283-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308137

RESUMO

We report the results of test measurements aimed at determining the performances of (6)Li doped glass scintillators for the detection of ultra-cold neutrons. Four types of scintillators, GS1, GS3, GS10 and GS20, which differ by their (6)Li concentrations, have been tested. The signal to background separation is fully acceptable. The relative detection efficiencies have been determined as a function of the neutron velocity. We find that GS10 has a higher efficiency than the others for the detection of neutrons with velocities below 7 m/s. Two pieces of scintillators have been irradiated with a high flux of cold neutrons to test the radiation hardness of the glasses. No reduction in the pulse height has been observed up to an absorbed neutron dose of 1 × 10(13) cm(-3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...