Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202401020, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632078

RESUMO

Singlet carbenes are not always isolable and often even elude direct detection. When they escape observation, their formation can sometimes be evidenced by in-situ trapping experiments. However, is carbene-like reactivity genuine evidence of carbene formation? Herein, using the first example of a spectroscopically characterized cyclic (amino)(aryl)carbene (CAArC), we cast doubt on the most common carbene trapping reactions as sufficient proof of carbene formation.

2.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518746

RESUMO

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Assuntos
Proteínas do Capsídeo , HIV-1 , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus , Replicação Viral , Antivirais/farmacologia
3.
J Am Chem Soc ; 146(11): 7243-7256, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456803

RESUMO

The design of molecular magnets has progressed greatly by taking advantage of the ability to impart successive perturbations and control vibronic transitions in 4fn systems through the careful manipulation of the crystal field. Herein, we control the orientation and rigidity of two dinuclear ErCOT-based molecular magnets: the inversion-symmetric bridged [ErCOT(µ-Me)(THF)]2 (2) and the nearly linear Li[(ErCOT)2(µ-Me)3] (3). The conserved anisotropy of the ErCOT synthetic unit facilitates the direction of the arrangement of its magnetic anisotropy for the purposes of generating controlled internal magnetic fields, improving control of the energetics and transition probabilities of the electronic angular momentum states with exchange biasing via dipolar coupling. This control is evidenced through the introduction of a second thermal barrier to relaxation operant at low temperatures that is twice as large in 3 as in 2. This barrier acts to suppress through-barrier relaxation by protecting the ground state from interacting with stray local fields while operating at an energy scale an order of magnitude smaller than the crystal field term. These properties are highlighted when contrasted against the mononuclear structure ErCOT(Bn)(THF)2 (1), in which quantum tunneling of the magnetization processes dominate, as demonstrated by magnetometry and ab initio computational methods. Furthermore, far-infrared magnetospectroscopy measurements reveal that the increased rigidity imparted by successive removal of solvent ligands when adding bridging methyl groups, along with the increased excited state purity, severely limits local spin-vibrational interactions that facilitate magnetic relaxation, manifesting as longer relaxation times in 3 relative to those in 2 as temperature is increased.

4.
Chem Asian J ; 18(24): e202300788, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37883375

RESUMO

The formation of amide bonds is an important process since this linkage is an essential component in proteins, pharmaceuticals, and other medicinally and biologically significant molecules. Recently, it was demonstrated that germylamines R3 GeNR'2 were useful reagents for the conversion of acid fluorides to amides. This transformation occurs readily at room temperature and has a low activation energy. In the present study, the versatility of this amidation reaction with aryl acid fluorides is investigated. A series of thirteen acid fluorides with various substituents on the aromatic ring were reacted with the germylamine Ph3 GeNMe2 and twelve of these were converted to the corresponding amides in high yields, the exception being 1,4-benzenedicarbonyl difluoride. The germylamines Bun 3 GeNMe2 and Pri 3 GeNMe2 also could be used for this interconversion, and both of these species successfully converted 1,4-benzenedicarbonyl difluoride to the corresponding amide. In addition, the crystal structure of Ph3 GeNMe2 is reported. This represents one of only three crystallographically characterized germylamines. The synthesis and 19 F NMR characterization of three fluorogermanes R3 GeF (R=Bun , Pri , and Mes) are also reported herein.

5.
J Am Chem Soc ; 145(40): 22265-22275, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774116

RESUMO

We present a wide-ranging interrogation of the border between single-molecule and solid-state magnetism through a study of erbium-based Ising-type magnetic compounds with a fixed magnetic unit, using three different charge-balancing cations as the means to modulate the crystal packing environment. Properties rooted in the isolated spin Hamiltonian remain fixed, yet careful observation of the dynamics reveals the breakdown of this approximation in a number of interesting ways. First, differences in crystal packing lead to a striking 3 orders of magnitude suppression in magnetic relaxation rates, indicating a rich interplay between intermolecular interactions governed by the anisotropic Ising lattice stabilization and localized slow magnetic relaxation driven by the spin-forbidden nature of quantum tunneling of the f-electron-based magnetization. By means of diverse and rigorous physical methods, including temperature-dependent X-ray crystallography, field, temperature, and time-dependent magnetometry, and the application of a new magnetization fitting technique to quantify the magnetic susceptibility peakshape, we are able to construct a more nuanced view of the role nonzero-dimensional interactions can play in what are predominantly considered zero-dimensional magnetic materials. Specifically, we use low field susceptibility and virgin-curve analysis to isolate metamagnetic spin-flip transitions in each system with a field strength corresponding to the expected strength of the internal dipole-dipole lattice. This behavior is vital to a complete interpretation of the dynamics and is likely common for systems with such high anisotropy. This collective interactivity opens a new realm of possibility for molecular magnetic materials, where their unprecedented localized anisotropy is the determining factor in building higher dimensionality.

6.
Nature ; 623(7985): 66-70, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730995

RESUMO

The chemistry of carbon is governed by the octet rule, which refers to its tendency to have eight electrons in its valence shell. However, a few exceptions do exist, for example, the trityl radical (Ph3C∙) (ref. 1) and carbocation (Ph3C+) (ref. 2) with seven and six valence electrons, respectively, and carbenes (R2C:)-two-coordinate octet-defying species with formally six valence electrons3. Carbenes are now powerful tools in chemistry, and have even found applications in material and medicinal sciences4. Can we undress the carbene further by removing its non-bonding electrons? Here we describe the synthesis of a crystalline doubly oxidized carbene (R2C2+), through a two-electron oxidation/oxide-ion abstraction sequence from an electron-rich carbene5. Despite a cumulenic structure and strong delocalization of the positive charges, the dicoordinate carbon centre maintains significant electrophilicity, and possesses two accessible vacant orbitals. A two-electron reduction/deprotonation sequence regenerates the parent carbene, fully consistent with its description as a doubly oxidized carbene. This work demonstrates that the use of bulky strong electron-donor substituents can simultaneously impart electronic stabilization and steric protection to both vacant orbitals on the central carbon atom, paving the way for the isolation of a variety of doubly oxidized carbenes.

7.
Inorg Chem ; 62(37): 15084-15093, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37667823

RESUMO

We report the synthesis and characterization of various compounds containing the 1,7,9-hydroxylated closo-dodecahydrododecaborate (B12H9(OH)32-) cluster motif. Specifically, we show how the parent compound can be synthesized on the multigram scale and further perhalogenated, leading to a new class of vertex-differentiated weakly coordinating anions. We show that a postmodification of the hydroxyl groups by alkylation affords further opportunities for tailoring these anions' stability, steric bulk, and solubility properties. The resulting dodecaborate-based salts were subjected to a full thermal and electrochemical stability evaluation, showing that many of these anions maintain thermal stability up to 500 °C and feature no redox activity below ∼1 V vs Fc/Fc+. Mixed hydroxylated/halogenated clusters show enhanced solubility compared to their purely halogenated analogs and retain weakly coordinating properties in the solid state, as demonstrated by ionic conductivity measurements of their Li+ salts.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 6): 575-577, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288457

RESUMO

The title compound {systematic name: bis-[2-(1,3-dioxoisoindol-2-yl)eth-yl]aza-nium chloride dihydrate}, C20H18N3O4 +·Cl-·2H2O, is a phthalimide-protected polyamine that was synthesized by a previous method. It was characterized by ESI-MS, 1H NMR, and FT-IR. Crystals were grown from a solution of H2O and 0.1 M HCl. The central nitro-gen atom is protonated and forms hydrogen bonds with the chloride ion and a water mol-ecule. The two phthalimide units make a dihedral angle of 22.07 (3)°. The crystal packing features a hydrogen-bond network, two-coordinated chloride, and off-set π-π stacking.

9.
J Am Chem Soc ; 145(26): 14345-14353, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37351898

RESUMO

This work demonstrates the first successful electrochemical cycling of a redox-active boron cluster-based material in the solid state. Specifically, we designed and synthesized an ether-functionalized dodecaborate cluster, B12(OCH3)12, which is the smallest redox-active building block in the B12(OR)12 family. This species can reversibly access four oxidation states in solution, ranging from a dianion to a radical cation. We show that a chemically isolated and characterized neutral [B12(OCH3)12]0 cluster can be utilized as a cathode active material in a PEO-based rechargeable all-solid-state cell with a lithium metal anode. The cell exhibits an impressive active material utilization close to 95% at C/20 rate, a high Coulombic efficiency of 96%, and reversibility, with only 4% capacity fade after 16 days of cycling. This work represents a conceptual departure in the development of redox-active components for electrochemical storage and serves as an entry point to a broader class of borane-based materials.

10.
Angew Chem Int Ed Engl ; 62(33): e202305404, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37221132

RESUMO

Organic circularly polarized luminescence (CPL)-active molecular emitters featuring dynamic propeller-like luminophores were prepared in one step from cyclic(alkyl)(amino) carbenes (CAACs). These molecules exhibit through-space arene-arene π-delocalization and rapid intramolecular inter-system crossing (ISC) in line with their helical character.

11.
Nat Commun ; 14(1): 1671, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966132

RESUMO

Introducing a tri-coordinate boron-based functional group (e.g., boronic ester) into an unactivated C-H bond in the absence of directing groups is an ongoing challenge in synthetic chemistry. Despite previous developments in transition metal-catalyzed and -free approaches, C-H borylation of sterically hindered arenes remains a largely unsolved problem to date. Here, we report a synthetic strategy of a two-step, precious metal-free electrophilic C-H borylation of sterically hindered alkyl- and haloarenes to generate aryl boronic esters. The first step relies on electrophilic aromatic substitution (EAS) induced by cage-opening of Cs2[closo-B10H10], forming a 6-Ar-nido-B10H13 product containing a B-C bond, followed by a cage deconstruction of arylated decaboranes promoted by diols. The combination of these two steps allows for the preparation of aryl boronic esters that are hardly accessible by current direct C-H borylation approaches. This reaction does not require any precious metals, highly-engineered ligands, pre-functionalized boron reagents, or inert conditions. In addition, the unique properties of a non-classical boron cluster electrophile intermediate, B10H13+, afford a regioselectivity with unique steric and electronic control without the undesirable side reactions.

12.
Chem Sci ; 14(4): 1018-1026, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755719

RESUMO

Multivalency plays a key role in achieving strong, yet reversible interactions in nature, and provides critical chemical organization in biological recognition processes. Chemists have taken an interest in designing multivalent synthetic assemblies to both better understand the underlying principles governing these interactions, and to build chemical tools that either enhance or prevent such recognition events from occurring in biology. Rationally tailoring synthetic strategies to achieve the high level of chemical control and tunability required to mimic these interactions, however, is challenging. Here, we introduce a systematic and modular synthetic approach to the design of well-defined molecular multivalent protein-binding constructs that allows for control over size, morphology, and valency. A series of supramolecular mono-, bi-, and tetrametallic Fe(ii) complexes featuring a precise display of peripheral saccharides was prepared through coordination-driven self-assembly from simple building blocks. The molecular assemblies are fully characterized, and we present the structural determination of one complex in the series. The mannose and maltose-appended assemblies display strong multivalent binding to model lectin, Concanavalin A (K d values in µM), where the strength of the binding is a direct consequence of the number of saccharide units decorating the molecular periphery. This versatile synthetic strategy provides chemical control while offering an easily accessible approach to examine important design principles governing structure-function relationships germane to biological recognition and binding properties.

13.
Angew Chem Int Ed Engl ; 62(9): e202211794, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36524997

RESUMO

A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well-defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench-stable, 18-electron, formally zero-valent nickel-olefin complexes that are competent pre-catalysts in various reactions. Our investigation includes preparations of novel, bench-stable Ni(COD)(L) complexes (COD=1,5-cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene-S-oxide, and fulvene. Characterization by NMR, IR, single-crystal X-ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel-catalyzed reactions underscore the complementary nature of the different pre-catalysts within this toolkit.

14.
Sci Rep ; 12(1): 19764, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396724

RESUMO

Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation.


Assuntos
Apêndice , Ácidos Graxos , Humanos , Estearatos , Apendicectomia , Cromatografia Gasosa
15.
Chem Sci ; 13(38): 11382-11387, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320577

RESUMO

Treatment of the trichlorotin-capped trinuclear nickel cluster, [Ni3(dppm)3(µ3-Cl)(µ3-SnCl3)], 1, with 4 eq. NaHB(Et)3 yields a µ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)3(µ3-H)(µ3-SnH)], 2 [dppm = bis(diphenylphosphino)methane]. Single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and computational studies together support that cluster 2 is a divalent tin hydride. Complex 2 displays a wide range of reactivity including oxidative addition of bromoethane across the Sn center. Addition of 1 eq. iodoethane to complex 2 releases H2 (g) and generates an ethyltin-capped nickel cluster with a µ3-iodide, [Ni3(dppm)3(µ3-I)(µ3-Sn(CH2CH3))], 4. Notably, insertion of alkynes into the Sn-H bond of 2 can be achieved via addition of 1 eq. 1-hexyne to generate the 1-hexen-2-yl-tin-capped nickel cluster, [Ni3(dppm)3(µ3H)(µ3-Sn(C6H11))], 5. Addition of H2 (g) to 5 regenerates the starting material, 2, and hexane. The formally 44-electron cluster 2 also displays significant redox chemistry with two reversible one-electron oxidations (E = -1.3 V, -0.8 V vs. Fc0/+) and one-electron reduction process (E = -2.7 V vs. Fc0/+) observed by cyclic voltammetry.

16.
Dalton Trans ; 51(46): 17688-17699, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36345597

RESUMO

Surface immobilization of organometallic catalysts is a promising approach to developing new catalytic systems that combine molecular catalysts with heterogenous surfaces to probe surface mechanisms. The orientation of the catalyst relative to the surface is one important parameter that must be considered in such hybrid systems. In this work, we synthesize three new sulfide-modified Ir piano-stool complexes with sulfide-modified bipyridine and phenylpyridine ligands for the attachment to Au(111) surfaces. Self-assembled monolayers made from (Cp*Ir(2,2'-bipyridine-4-sulfide)Cl)2[Cl]2 (C1m) and [Cp*Ir(2-phenylpyridine-4-sulfide)Cl]2 (C2m) were characterized by combining polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) with DFT calculations of the minimum energy orientations of the complexes on the surface. We find that the bipyridine and phenylpyridine ligands are oriented at between 73-77° relative to the surface normal, irrespective of the orientation of the other ligands. Additionally, DFT and PM-IRRAS support that there is no orientation preference for C1m and C2m, with both orientations present on the surface.

17.
ACS Mater Lett ; 4(10): 1937-1943, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36213253

RESUMO

We present the synthesis of metal oxide frameworks composed of the Preyssler anion, [NaP5W30O110]14-, bridged with transition-metal cations and infiltrated with polyethylene glycol. The frameworks can be dissolved in water to form freestanding rigid or flexible films or gels. Powder X-ray diffraction shows that all form-factors maintain the short-range order of the original crystals. Raman spectroscopy reveals that, similar to hydrogels, the macroscopic mechanical properties of these composites are dependent on the water content and the extent of hydrogen-bonding within the water network. The understanding gained from these studies facilitates solution-phase processing of polyoxometalate frameworks into flexible form factors.

18.
Inorg Chem ; 61(40): 16163-16176, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167508

RESUMO

Reactions of the alkyl isocyanide fac-[Tc(CO)3(CNR)2Cl] complexes (2) (CNR = CNnBu or CNtBu) with the sterically encumbered isocyanide CNp-FArDarF2 [DArF = 3,5-(CF3)2C6H3] allow a selective exchange of the carbonyl ligands of 2 and the isolation of the mixed-isocyanide complexes mer,trans-[Tc(CNp-FArDarF2)3(CNR)2Cl] (3). Depending on the steric requirements of the residues R, the remaining chlorido ligand can be replaced by another isocyanide ligand. Cationic complexes such as mer-[Tc(CNp-FArDarF2)3(CNnBu)3]+ (4a) or mer,trans-[Tc(CNp-FArDarF2)3(CNnBu)2(CNtBu)]+ (6) have been prepared in this way and isolated as their PF6- salts. mer,trans-[Tc(CNp-FArDarF2)3(CNnBu)2(CNtBu)](PF6) represents to the best of our knowledge the first transition-metal complex with three different isocyanides in its coordination sphere. Since the degree of the ligand exchange seems to be controlled both by the electronic and steric measures of the incoming isocyanides, we undertook similar reactions with the sterically less demanding p-fluorophenyl isocyanide, CNPhpF, which indeed readily led to the hexakis(isocyanide)technetium(I) cation through an exchange of all ligands in the staring materials [Tc2(CO)6(µ-Cl)3]- or fac-[Tc(CO)3(CNR)2Cl]. The influence of the substituents at the isocyanide ligands in such reactions has been reasoned with the density functional theory-derived electrostatic potential at the accessible surface of the corresponding isocyanide carbon atoms.

19.
J Am Chem Soc ; 144(25): 11316-11325, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35713679

RESUMO

Dipolar coupling is rarely invoked as a driving force for slow relaxation dynamics in lanthanide-based single-molecule magnets, though it is often the strongest mechanism available for mediating inter-ion magnetic interactions in such species. Indeed, for multinuclear lanthanide complexes, the magnitude and anisotropy of the dipolar interaction can be considerable given their ability to form highly directional, high-moment ground states. Herein, we present a mono-, di-, and trinuclear erbium-based single-molecule magnet sequence, ([Er-TiPS2COT]+)n (n = 1-3), wherein a drastic reduction in the allowedness of magnetic relaxation pathways is rationalized within the framework of the dipole-dipole interactions between angular momentum quanta. The resulting design principles for multinuclear molecular magnetism arising from intramolecular dipolar coupling interactions between highly anisotropic magnetic states present a nuanced justification of the relaxation dynamics in complex manifolds of individual quantized transitions. Experimental evidence for the validity of this model is provided by coupling the relaxation dynamics to an AC magnetic field across an unprecedented frequency range for molecular magnetism (103-10-5 Hz). The combination of slow dynamics and multiple, low-energy transitions leads to a number of noteworthy phenomena, including a lanthanide single-molecule magnet with three well-defined relaxation processes observable at a single temperature.


Assuntos
Elementos da Série dos Lantanídeos , Imãs , Anisotropia , Campos Magnéticos , Fenômenos Físicos
20.
Nat Chem ; 14(6): 632-639, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35655006

RESUMO

The controlled isomerization and functionalization of alkenes is a cornerstone achievement in organometallic catalysis that is now widely used throughout industry. In particular, the addition of CO and H2 to an alkene, also known as the oxo-process, is used in the production of linear aldehydes from crude alkene feedstocks. In these catalytic reactions, isomerization is governed by thermodynamics, giving rise to functionalization at the most stable alkylmetal species. Despite the ubiquitous industrial applications of tandem alkene isomerization/functionalization reactions, selective functionalization at internal positions has remained largely unexplored. Here we report that the simple W(0) precatalyst W(CO)6 catalyses the isomerization of alkenes to unactivated internal positions and subsequent hydrocarbonylation with CO. The six- to seven-coordinate geometry changes that are characteristic of the W(0)/W(II) redox cycle and the conformationally flexible directing group are key factors in allowing isomerization to take place over multiple positions and stop at a defined unactivated internal site that is primed for in situ functionalization.


Assuntos
Alcenos , Tungstênio , Catálise , Isomerismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...