Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1677, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243066

RESUMO

Oviposition is essential in the life history of insects and is mainly mediated by chemical and tactile cues present on the plant surface. Oviposition deterrents or stimulants can modify insect oviposition and be employed in pest control. Relatively few gustatory oviposition stimuli have been described for tortricid moths. In this study the effect of NaCl, KCl, sucrose, fructose and neem oil on the number of eggs laid by Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Dennis & Schifermüller) was tested in laboratory arenas containing filter papers loaded with 3 doses of a given stimulus and solvent control. In general, salts increased oviposition at the mid dose (102 M) and sugars reduced it at the highest dose (103 mM), but these effects depended on the species. Neem oil dramatically reduced the number of eggs laid as the dose increased, but the lowest neem oil dose (0.1% v/v) increased L. botrana oviposition relative to solvent control. Our study shows that ubiquitous plant chemicals modify tortricid moth oviposition under laboratory conditions, and that neem oil is a strong oviposition deterrent. The oviposition arena developed in this study is a convenient tool to test the effect of tastants on the oviposition behavior of tortricid moths.


Assuntos
Glicerídeos , Mariposas , Terpenos , Animais , Feminino , Mariposas/fisiologia , Sais/farmacologia , Oviposição/fisiologia , Açúcares/farmacologia , Solventes/farmacologia
2.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37416981

RESUMO

Leafrollers (Lepidoptera: Tortricidae) are a large family of small moths containing over 10,000 species, many of which are crop pests. Grapholita molesta, Lobesia botrana and Cydia pomonella adults are sexually active before, during and after sunset, respectively. We wanted to determine whether being active at different times of the day and night is associated with differences in their visual system. Spectral sensitivity (SS) was measured with electroretinograms and selective adaptation with green, blue and ultraviolet light. SS curves could be fitted with a triple nomogram template which indicated the existence of three photoreceptor classes peaking at 355, 440 and 525 nm. The retinae showed clear regionalization, with fewer blue receptors dorsally. No differences among species or between sexes were found. Intracellular recordings in C. pomonella also revealed three photoreceptor classes with sensitivities peaking at 355, 440 and 525 nm. The blue photoreceptors showed inhibitory responses in the green part of the spectrum, indicating the presence of a colour-opponent system. Flicker fusion frequency experiments showed that the response speed was similar between sexes and species and fused at around 100 Hz. Our results indicate that the three species have the ancestral insect retinal substrate for a trichromatic colour vision, based upon the UV, blue and green-sensitive photoreceptors, and lack any prominent adaptations related to being active under different light conditions.


Assuntos
Visão de Cores , Mariposas , Animais , Células Fotorreceptoras , Retina , Células Fotorreceptoras de Vertebrados
3.
Sci Rep ; 12(1): 18882, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344566

RESUMO

In adult Lepidoptera the labial palps are best known for their role in CO2 detection, but they can also bear sensilla chaetica which function is unknown. The number and distribution of sensilla chaetica in labial palps was studied using a bright field microscope. To determine if these sensilla have a gustatory function, we performed single sensillum electrophysiology recordings from palp and antennal sensilla of adult moths of Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Denis and Shieffermüller). Each sensillum was stimulated with 3 doses of one of four test stimulus (sucrose, fructose, KCl and NaCl). Overall, responses (spikes/s-1) increased with dose, and were higher in the palps than in the antennae, and higher to sugars than to salts. With sugars the response increased with concentration in the palp but not in the antenna. With salts there was a drop in response at the intermediate concentration. The number and position of sensilla chaetica on labial palps was variable among individuals. Sensilla were located in the most exposed areas of the palp. Differences in sensilla distribution were detected between species. Such differences among species and between palps and antenna suggest that taste sensilla on the palps have an unforeseen role in adaptation.


Assuntos
Mariposas , Sensilas , Animais , Sensilas/fisiologia , Paladar , Sais , Açúcares , Microscopia Eletrônica de Varredura , Antenas de Artrópodes
4.
Sci Rep ; 12(1): 7019, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488118

RESUMO

Female moths emit sex pheromone to attracts males, and although they are not attracted to their own sex pheromone, they appear to detect it as it affects their behavior. In order to elucidate the mechanism of pheromone "autodetection" we compared responses of olfactory receptor neurons (ORNs) of male and female Grapholita molesta, a species with reported pheromone autodetection. Two concentrations of the major (Z8-12:Ac) and minor (E8-12:Ac) sex pheromone components, a plant-volatile blend containing methyl salicylate, terpinyl acetate and (E)-ß-farnesene, and the male-produced hair-pencil (i.e., courtship) pheromone (ethyl trans-cinnamate) were tested in 45 male and 305 female ORNs. Hierarchical cluster analysis showed radically different peripheral olfactory systems between sexes that could be linked to their specific roles. In males 63% of the ORNs were tuned specifically to the major or minor female sex pheromone components, and 4% to the plant volatile blend, while the remaining 33% showed unspecific responses to the stimulus panel. In females 3% of the ORNs were specifically tuned to the male hair-pencil pheromone, 6% to the plant volatile blend, 91% were unspecific, and no ORN was tuned their own sex pheromone components. The lack of sex pheromone-specific ORNs in females suggests that they are not able to discriminate pheromone blends, and thus pheromone autodetection is unlikely in this species. We discuss our results in the context of the methodological limitations inherent to odor stimulation studies.


Assuntos
Mariposas , Neurônios Receptores Olfatórios , Atrativos Sexuais , Animais , Feminino , Frutas , Masculino , Mariposas/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Feromônios , Plantas , Atrativos Sexuais/fisiologia
5.
Environ Entomol ; 50(6): 1286-1293, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34551073

RESUMO

Plants release volatiles in response to caterpillar feeding. These herbivore-induced plant volatiles (HIPVs) attract natural enemies of the herbivores and repel or attract conspecific adult herbivores in a tri-trophic interaction which has been considered to be an indirect plant defense against herbivores. Recently, we demonstrated the attraction of male and female European grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) to a blend of phenylacetonitrile and acetic acid, two compounds identified as HIPVs in heterospecific apple-leafroller interactions. The ecological basis of our findings is not clearly understood. Thus, this work was undertaken to investigate HIPVs in the grapevine-leafroller interaction and study the response of heterospecific adults L. botrana, to these volatiles. We collected headspace volatiles emitted from uninfested grapevines and grapevines infested with larvae of a generalist herbivore, the grapevine leafroller moth, Sparganothis pilleriana (Denis & Schiffermüller), and analyzed them using gas chromatography/mass spectrometry. Infested grape leaves released three compounds (phenylacetonitrile, indole, and 2-phenylethanol) not found from uninfested leaves. Nine different blends, comprising a full factorial set of the three compounds with each blend containing acetic acid, were tested in a field-cage trial. Only lures containing phenylacetonitrile caused a significant increase in trap catches compared to the other lures and blank traps. Electroantennographic tests show that L. botrana can detect the compounds. The results confirm our hypothesis that phenylacetonitrile is released during grapevines infestation with herbivores, and attracts adult L. botrana.


Assuntos
Malus , Mariposas , Compostos Orgânicos Voláteis , Animais , Feminino , Herbivoria , Larva , Masculino
6.
Insects ; 10(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480797

RESUMO

We analysed electroantennogram (EAG) responses of male and female adults of the European grapevine moth Lobesiabotrana (Denis et Schiffermüller) (Lepidoptera: Tortricidae) collected as larvae from grapevine (Vitis vinifera L.) and flax-leaved daphne (Daphne gnidium L.). The host-plant odorants tested were either V. vinifera-specific [1-octen-3-ol, (E)-ß-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene], D. gnidium-specific (2-ethyl-hexan-1-ol, benzothiazole, linalool-oxide, ethyl benzanoate), or were shared by both host-plants (linalool, methyl salicylate). Sex pheromone compounds were also tested. The male response to the major pheromone component (E7,Z9-12:Ac) was higher than to any other stimuli, whereas the response to the minor pheromone components (E7,Z9-12:OH and Z9-12:Ac) was not different from the response to the plant odorants. The female response to pheromone was lower or not different from that to plant odorants. Methyl salicylate elicited a higher response in females and (E)-ß-farnesene elicited a higher response than several other plant odorants in both sexes. Non-significant interactions between host-plant odorant and sex indicated an absence of sex specialization for host-plant volatile detection. The lack of a significant interaction between plant volatiles and larval host-plants suggested that there was no specialization for plant-volatile detection between V. vinifera and D. gnidium individuals.

7.
Sci Rep ; 9(1): 8150, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148562

RESUMO

The prevailing use of neonicotinoids in pest control has adverse effects on non-target organisms, like honeybees. However, relatively few studies have explored the effect of sublethal neonicotinoid levels on olfactory responses of pest insects, and thus their potential impact on semiochemical surveillance and control methods, such as monitoring or mating disruption. We recently reported that sublethal doses of the neonicotinoid thiacloprid (TIA) had dramatic effects on sex pheromone release in three tortricid moth species. We present now effects of TIA on pheromone detection and, for the first time, navigational responses of pest insects to pheromone sources. TIA delayed and reduced the percentage of males responding in the wind tunnel without analogous alteration of electrophysiological antennal responses. During navigation along an odor plume, treated males exhibited markedly slower flights and, in general, described narrower flight tracks, with an increased susceptibility to wind-induced drift. All these effects increased in a dose-dependent manner starting at LC0.001 - which would kill just 10 out of 106 individuals - and revealed an especially pronounced sensitivity in one of the species, Grapholita molesta. Our results suggest that minimal neonicotinoid quantities alter chemical communication, and thus could affect the efficacy of semiochemical pest management methods.


Assuntos
Inseticidas/administração & dosagem , Mariposas/fisiologia , Neonicotinoides/administração & dosagem , Atrativos Sexuais/metabolismo , Animais , Ecologia , Voo Animal , Masculino , Odorantes , Reprodução , Comportamento Sexual Animal , Temperatura , Tiazinas/administração & dosagem , Vento
8.
Z Naturforsch C J Biosci ; 74(5-6): 161-165, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30721146

RESUMO

We recently identified unique caterpillar-induced plant volatile compounds emitted from apple leaves infested with the larvae of various leafroller species. In subsequent field tests, binary blends of phenylacetonitrile+acetic acid and 2-phenylethanol+acetic acid were found to be attractive to a range of tortricid leafroller species (Tortricidae: Tortricinae) in both the Southern and Northern Hemispheres. In this work, the caterpillar-induced plant volatiles from the apple-leafroller system were tested in two vineyards in Spain and Hungary for their attractiveness to the grape frugivore Lobesia botrana (Tortricidae: Olethreutinae). As seen for Tortricinae species, a binary blend of phenylacetonitrile+acetic acid attracted significantly more male and female L. botrana to traps than acetic acid or blank lures. Traps baited with other caterpillar-induced plant volatile compounds (benzyl alcohol, 2-phenylethanol, indole, and (E)-nerolidol, each as a binary blend with acetic acid) did not catch significantly more moths than traps containing acetic acid alone. The catches of male and female moths support an optimistic future for new products in female tortricid surveillance and control that are based on combinations of kairomone compounds released from larval-damaged foliage.


Assuntos
Ácido Acético/farmacologia , Acetonitrilas/farmacologia , Interações Hospedeiro-Parasita , Lepidópteros/efeitos dos fármacos , Vitis/parasitologia , Compostos Orgânicos Voláteis/farmacologia , Ácido Acético/metabolismo , Acetonitrilas/metabolismo , Animais , Lepidópteros/patogenicidade , Malus/metabolismo , Malus/parasitologia , Compostos Orgânicos Voláteis/metabolismo
9.
J Chem Ecol ; 43(9): 881-890, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28852942

RESUMO

In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC0.001 (a lethal concentration that kills only 1 in 105 individuals), and altered its calling period at LC1, and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC10. Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.


Assuntos
Inseticidas/toxicidade , Mariposas/efeitos dos fármacos , Neonicotinoides/toxicidade , Feromônios/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Feminino , Controle de Insetos , Masculino , Mariposas/fisiologia
10.
J Econ Entomol ; 110(4): 1740-1749, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402435

RESUMO

Insecticides are the dominant pest management method in fruit and vegetable crops worldwide owing to their quick effect, low cost, and relatively easy application, but they bear negative effects on human health and the environment. Insecticide mode of action (MoA), target species, and sex are variables that could affect insecticide-induced mortality. We recorded the mortality caused by three neurotoxic insecticides with different modes of action (chlorpyrifos [organophosphate, acetylcholinesterase inhibitor], λ-cyhalothrin [pyrethroid, sodium channel modulator], and thiacloprid [neonicotinoid, nicotinic acetylcholinesterase receptor agonist]) applied topically to adult males and females of three economically important tortricid species [Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller)] that strongly depend on insecticide use for their control. Concentration and dose-mortality curves were recorded at 24 and 48 h postapplication. Large mortality differences between insecticides (maximum 7,800-fold for LD50) were followed by much lower, yet important, differences between species (maximum 115-fold), and sexes (maximum 41.5-fold). Significant interactions between the three factors indicate that they are not independent from each other. Interestingly, with the organophosphate chlorpyrifos, males of the three species were less susceptible than females, which was unexpected, as females are larger than males. Higher female sensitivity to organophosphates has been reported previously but only in G. molesta, not in other moth species. Our results highlight the importance of taking into account sex in dose-mortality studies with adult moths.


Assuntos
Clorpirifos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Piridinas/farmacologia , Tiazinas/farmacologia , Administração Tópica , Animais , Relação Dose-Resposta a Droga , Feminino , Controle de Insetos , Masculino , Neonicotinoides , Especificidade da Espécie
11.
J Insect Physiol ; 82: 46-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26296453

RESUMO

The response of antennal olfactory receptor neurons (ORNs) of Monochamus galloprovincialis to several odourants was tested using single sensillum electrophysiology. Behaviourally active pheromone, and kairomone (host and sympatric bark beetle pheromone) odours were tested alongside smoke compounds released by burnt wood that are potentially attractive to the insect. The antennae bore several types of sensilla. Two plate areas in the proximal and distal ends of each antennal segment were covered with basiconic sensilla that responded to the odour stimuli. Sensilla basiconica contained one or two cells of different spike amplitude. The 32 male and 38 female ORNs tested responded with excitations or inhibitions to the different plant odours. In general the response of male and female receptors was very similar so they were pooled to perform a cluster analysis on ORN responses. Six ORNs were clearly specialised for pheromone reception. Responses to kairomone and smoke odours were less specific than those of pheromone, but a group of 9 cells was clearly excited by smoke compounds (mainly eugenol and 4-methyl 2-methoxyphenol), a group of 8 cells was very responsive to α-pinene, ß-pinene and cis-verbenol, and a group of 14 cells responded to a wider range of compounds. The rest of the cells (47%) were either non-responsive or slightly inhibited by smoke compounds. Dose-response curves were obtained for several compounds. Different compounds induced significantly different latencies and these appeared to be unrelated to their boiling point.


Assuntos
Besouros/fisiologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Feromônios/farmacologia , Fumaça , Animais , Antenas de Artrópodes/ultraestrutura , Besouros/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Masculino , Monoterpenos/farmacologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Pinus/química , Sensilas/efeitos dos fármacos
12.
J Insect Physiol ; 81: 118-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188269

RESUMO

In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.


Assuntos
Antenas de Artrópodes/metabolismo , Mariposas/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Feromônios/metabolismo , Receptores de Feromônios/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Masculino , Malus/química , Odorantes , Prunus persica/química , Sensilas/metabolismo
13.
J Insect Physiol ; 71: 128-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25450425

RESUMO

The response profile of olfactory receptor neurons (ORNs) of male Grapholita molesta (Busck) to the three female sex pheromone components [(Z)-8-dodecenyl acetate (Z8-12:Ac), (E)-8-dodecenyl acetate (E8-12:Ac), and (Z)-8-dodecenyl alcohol (Z8-12:OH)] was tested with single sensillum electrophysiology. Sensilla trichodea housed normally one, but sometimes two or three ORNs with distinct action potential amplitudes. One third of the sensilla contacted contained ORNs that were unresponsive to any of the pheromone components tested. The remaining sensilla contained one ORN that responded either to the major pheromone component, Z8-12:Ac ("Z-cells", 63.7% of sensilla), or to its isomer E8-12:Ac ("E-cells", 7.4% of sensilla). 31% of Z- and E-sensilla had 1 or 2 additional cells, but these did not respond to pheromone. None of the 176 sensilla contacted hosted ORNs that responded to Z8-12:OH. The proportion of Z- and E-cells on the antennae (100:11.6, respectively) is similar to the proportion of these compounds in the blend (100:6, respectively). The response of Z-cells was very specific, whereas E-cells also responded to the Z isomer, albeit with lower sensitivity.


Assuntos
Antenas de Artrópodes/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Mariposas/fisiologia , Atrativos Sexuais/farmacologia , Animais , Antenas de Artrópodes/ultraestrutura , Relação Dose-Resposta a Droga , Eletrofisiologia , Masculino , Microscopia Eletrônica de Varredura , Neurônios Receptores Olfatórios/fisiologia , Sensilas/metabolismo , Sensilas/ultraestrutura
14.
Insects ; 5(4): 705-21, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26462935

RESUMO

The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.

15.
J Exp Biol ; 215(Pt 13): 2334-41, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22675195

RESUMO

Sex pheromones are intraspecific olfactory signals emitted by one sex to attract a potential mating partner. Behavioural responses to sex pheromones are generally highly stereotyped. However, they can be modulated by experience, as male moths previously exposed to female sex pheromone respond with a lower threshold upon further detection, even after long delays. Here, we address the question of the neural mechanisms underlying such long-term modulation. As previous work has shown increased responses to pheromone in central olfactory neurons, we asked whether brief exposure to the pheromone increases input activity from olfactory receptor neurons. Males pre-exposed to sex pheromone exhibited increased peripheral sensitivity to the main pheromone component. Among nine antennal genes targeted as putatively involved in pheromone reception, one encoding a pheromone-binding protein showed significant upregulation upon exposure. In the primary olfactory centre (antennal lobe), the neural compartment processing the main pheromone component was enlarged after a brief pheromone exposure, thus suggesting enduring structural changes. We hypothesise that higher peripheral sensitivity following pre-exposure leads to increased input to the antennal lobe, thus contributing to the structural and functional reorganization underlying a stable change in behaviour.


Assuntos
Antenas de Artrópodes/fisiologia , Atrativos Sexuais/fisiologia , Spodoptera/fisiologia , Animais , Antenas de Artrópodes/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Masculino , Neurônios Receptores Olfatórios/fisiologia , Olfato , Spodoptera/genética
16.
Proc Natl Acad Sci U S A ; 109(8): E490-6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22184232

RESUMO

Wood cockroaches in the genus Parcoblatta, comprising 12 species endemic to North America, are highly abundant in southeastern pine forests and represent an important prey of the endangered red-cockaded woodpecker, Picoides borealis. The broad wood cockroach, Parcoblatta lata, is among the largest and most abundant of the wood cockroaches, constituting >50% of the biomass of the woodpecker's diet. Because reproduction in red-cockaded woodpeckers is affected dramatically by seasonal and spatial changes in arthropod availability, monitoring P. lata populations could serve as a useful index of habitat suitability for woodpecker conservation and forest management efforts. Female P. lata emit a volatile, long-distance sex pheromone, which, once identified and synthesized, could be deployed for monitoring cockroach populations. We describe here the identification, synthesis, and confirmation of the chemical structure of this pheromone as (4Z,11Z)-oxacyclotrideca-4,11-dien-2-one [= (3Z,10Z)-dodecadienolide; herein referred to as "parcoblattalactone"]. This macrocyclic lactone is a previously unidentified natural product and a previously unknown pheromonal structure for cockroaches, highlighting the great chemical diversity that characterizes olfactory communication in cockroaches: Each long-range sex pheromone identified to date from different genera belongs to a different chemical class. Parcoblattalactone was biologically active in electrophysiological assays and attracted not only P. lata but also several other Parcoblatta species in pine forests, underscoring its utility in monitoring several endemic wood cockroach species in red-cockaded woodpecker habitats.


Assuntos
Aves/fisiologia , Baratas/metabolismo , Espécies em Perigo de Extinção , Alimentos , Lactonas/metabolismo , Compostos Macrocíclicos/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Cromatografia Gasosa , Feminino , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Atrativos Sexuais/análise , Atrativos Sexuais/química
17.
Eur J Neurosci ; 33(10): 1841-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21488987

RESUMO

Innate behaviours in animals can be influenced by several factors, such as the environment, experience, or physiological status. This behavioural plasticity originates from changes in the underlying neuronal substrate. A well-described form of plasticity is induced by mating. In both vertebrates and invertebrates, males experience a post-ejaculatory refractory period, during which they avoid new females. In the male moth Agrotis ipsilon, mating induces a transient inhibition of responses to the female-produced sex pheromone. To understand the neural bases of this inhibition and its possible odour specificity, we carried out a detailed analysis of the response characteristics of the different neuron types from the periphery to the central level. We examined the response patterns of pheromone-sensitive and plant volatile-sensitive neurons in virgin and mated male moths. By using intracellular recordings, we showed that mating changes the response characteristics of pheromone-sensitive antennal lobe (AL) neurons, and thus decreases their sensitivity to sex pheromone. Individual olfactory receptor neuron (ORN) recordings and calcium imaging experiments indicated that pheromone sensory input remains constant. On the other hand, calcium responses to non-pheromonal odours (plant volatiles) increased after mating, as reflected by increased firing frequencies of plant-sensitive AL neurons, although ORN responses to heptanal remained unchanged. We suggest that differential processing of pheromone and plant odours allows mated males to transiently block their central pheromone detection system, and increase non-pheromonal odour detection in order to efficiently locate food sources.


Assuntos
Mariposas/fisiologia , Odorantes , Plantas/química , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal/fisiologia , Aldeídos/química , Animais , Cálcio/metabolismo , Eletrofisiologia , Feminino , Masculino , Mariposas/anatomia & histologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Estimulação Química
18.
J Exp Biol ; 214(Pt 4): 637-45, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270313

RESUMO

Both sexes of Grapholita molesta, a key pest of stone fruits, are able to detect host-plant volatiles and the sex pheromone emitted by females, and to modify their behaviour accordingly. How olfactory information is processed in the central nervous system is unknown. Intracellular recordings and stainings were used to characterize antennal lobe (AL) neuron responses to single pheromone components, a behaviourally active blend of five peach volatiles and a pear-fruit ester. AL neurons with different response patterns responded to pheromone components and plant volatiles. In males more neurons responded specifically to the main pheromone component than in females, whereas neurons responding to all three pheromone components were more abundant in females. Neurons responding to all three pheromone components often responded also to the tested plant volatiles in both sexes. Responses to all pheromone components were dose dependent in males and females, but dose-response relationships differed between neurons and tested pheromone components. Among the five AL projection neurons identified neuroanatomically in males, no arborizations were observed in the enlarged cumulus (Cu), although all of them responded to pheromone compounds. In one of two stained projection neurons in females, however, the glomerulus, which is thought to be homologous to the Cu, was targeted. The processing of pheromone information by ordinary glomeruli rather than by the macroglomerular complex is thus a striking feature of this species, indicating that pheromone and plant volatile processing are not entirely separate in this tortricid moth AL. However, the absence of recorded pheromone responses in the Cu needs to be confirmed.


Assuntos
Encéfalo/metabolismo , Interneurônios/metabolismo , Mariposas/metabolismo , Neurópilo/metabolismo , Atrativos Sexuais/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Microscopia Confocal , Octoxinol , Fatores Sexuais , Estimulação Química
19.
Cell Tissue Res ; 337(3): 513-26, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19649654

RESUMO

The oriental fruit moth Cydia molesta is an important pest and the behavioural role of olfactory signals such as pheromones and plant volatiles have been studied extensively in both sexes. To understand odour processing further, however, detailed knowledge of the anatomy of the olfactory system is crucial. In the present study, an atlas of the antennal lobe (AL) is presented based on the three-dimensional reconstructions of both ALs of three male and three female brains by means of neuroanatomical and computational approaches. We identified 48-49 "ordinary" glomeruli and one large glomerulus situated at the entrance of the antennal nerve in males, and 49-52 "ordinary" glomeruli and one large glomerulus in the ventro-medial part of the AL in females. Anomalous supernumerary, anomalous missing and sexually dimorphic glomeruli were found in the studied individuals in greater numbers than in other lepidopteran species. Male and female maps were compared with respect to glomerular size and position with 45 glomeruli being matched, indicating a conserved glomerular pattern between the sexes. Three additional glomeruli were sexually dimorphic in size and five male-specific and six female-specific glomeruli were also found. Palp backfills resulted in the staining of a unique glomerulus in both sexes identified as the sexually dimorphic glomerulus 45. This glomerulus was never stained from antennal backfills, which stained the other glomeruli of the AL. The three-dimensional atlas can now be used to elucidate the functional role of individual glomeruli in both sexes of C. molesta.


Assuntos
Lepidópteros/citologia , Caracteres Sexuais , Animais , Feminino , Imageamento Tridimensional , Masculino , Microscopia Confocal , Mariposas , Condutos Olfatórios/citologia , Pupa , Órgãos dos Sentidos/citologia , Células Receptoras Sensoriais/citologia
20.
Pest Manag Sci ; 64(7): 736-47, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18300208

RESUMO

BACKGROUND: In recent years, many studies have been carried out on the behavioural and electrophysiological responses of Cydia pomonella (L.) to host volatile emissions, to find alternative attractants to the sex pheromone for pest monitoring. These studies have focused on apple and pear, and very little has been done on walnut. In the present work, the diurnal and seasonal variation in walnut volatile emissions and the electrophysiological response of C. pomonella have been studied. RESULTS: Ninety compounds were detected in walnut emissions, mainly monoterpenes and sesquiterpenes. The most abundant compound was beta-pinene, which, together with (Z)-3-hexenyl acetate, (E)-beta-ocimene, limonene, germacrene D, 1,8-cineole, sabinene, (E)-beta-farnesene, (E)-beta-caryophyllene, beta-myrcene and beta-phellandrene, constituted between 81.9 and 90.5% of the total chromatographic area. Differences between seasonal periods were significant for 39 compounds, and between daytimes for 14 compounds. Discernible and consistent EAD responses were detected to 11 walnut-origin compounds, and confirmed with synthetics to seven of them. Except for alloocimene, pinocarvone and caryophyllene oxide, all these compounds are also emitted by apple. CONCLUSION: Walnut volatile emissions differ widely from apple ones, but both share many compounds that are EAD-active in C. pomonella. However, among EAD-active compounds there are three walnut-specific ones, which should be further tested in behavioural assays.


Assuntos
Controle de Insetos , Juglans/metabolismo , Lepidópteros/fisiologia , Monoterpenos/farmacologia , Sesquiterpenos/farmacologia , Animais , Ritmo Circadiano , Eletrofisiologia , Juglans/química , Lepidópteros/efeitos dos fármacos , Masculino , Monoterpenos/análise , Odorantes , Sesquiterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...