Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Environ Microbiol ; 26(3): e16611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519875

RESUMO

Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.


Assuntos
Acidentes de Trânsito , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Microbiota/genética , Nova Zelândia
2.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301266

RESUMO

Genetic studies of nematodes have been dominated by Caenorhabditis elegans as a model species. A lack of genomic resources has limited the expansion of genetic research to other groups of nematodes. Here, we report a draft genome assembly of a mermithid nematode, Mermis nigrescens. Mermithidae are insect parasitic nematodes with hosts including a wide range of terrestrial arthropods. We sequenced, assembled, and annotated the whole genome of M. nigrescens using nanopore long reads and 10X Chromium link reads. The assembly is 524 Mb in size consisting of 867 scaffolds. The N50 value is 2.42 Mb, and half of the assembly is in the 30 longest scaffolds. The assembly BUSCO score from the eukaryotic database (eukaryota_odb10) indicates that the genome is 86.7% complete and 5.1% partial. The genome has a high level of heterozygosity (6.6%) with a repeat content of 83.98%. mRNA-seq reads from different sized nematodes (≤2 cm, 3.5-7 cm, and >7 cm body length) representing different developmental stages were also generated and used for the genome annotation. Using ab initio and evidence-based gene model predictions, 12,313 protein-coding genes and 24,186 mRNAs were annotated. These genomic resources will help researchers investigate the various aspects of the biology and host-parasite interactions of mermithid nematodes.


Assuntos
Mermithoidea , Nematoides , Animais , Mermithoidea/genética , Nematoides/genética , Genômica , Caenorhabditis elegans/genética , Genoma , Anotação de Sequência Molecular
3.
PeerJ ; 12: e16969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410796

RESUMO

Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.


Assuntos
Briozoários , Urocordados , Animais , Reação em Cadeia da Polimerase/métodos , Monitoramento Biológico , Água do Mar , Urocordados/genética
4.
Ann Bot ; 133(1): 169-182, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37804485

RESUMO

BACKGROUND AND AIMS: Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS: In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS: We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS: Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Geografia
5.
Mol Ecol Resour ; 24(2): e13901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009398

RESUMO

Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.


Assuntos
Fertilidade , Controle de Pragas , Animais , Camundongos , Feminino , Masculino , Controle de Pragas/métodos , Fertilidade/genética , Animais Selvagens , Mamíferos , Vertebrados
6.
Elife ; 122023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153986

RESUMO

We used non-invasive real-time genomic approaches to monitor one of the last surviving populations of the critically endangered kakapo (Strigops habroptilus). We first established an environmental DNA metabarcoding protocol to identify the distribution of kakapo and other vertebrate species in a highly localized manner using soil samples. Harnessing real-time nanopore sequencing and the high-quality kakapo reference genome, we then extracted species-specific DNA from soil. We combined long read-based haplotype phasing with known individual genomic variation in the kakapo population to identify the presence of individuals, and confirmed these genomically informed predictions through detailed metadata on kakapo distributions. This study shows that individual identification is feasible through nanopore sequencing of environmental DNA, with important implications for future efforts in the application of genomics to the conservation of rare species, potentially expanding the application of real-time environmental DNA research from monitoring species distribution to inferring fitness parameters such as genomic diversity and inbreeding.


Assuntos
DNA Ambiental , Papagaios , Humanos , Animais , Genômica , Solo , Biodiversidade
7.
Nat Commun ; 14(1): 6364, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848431

RESUMO

Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.


Assuntos
Marsupiais , Animais , Austrália , Nova Zelândia/epidemiologia
8.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640765

RESUMO

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Assuntos
Espécies em Perigo de Extinção , Papagaios , Humanos , Animais , Genômica , Genoma , Nova Zelândia
9.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398071

RESUMO

Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit.This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression, and results from mouse knockout models.This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals.In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.

10.
CRISPR J ; 6(4): 316-324, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439822

RESUMO

Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.


Assuntos
Sistemas CRISPR-Cas , Aprendizado Profundo , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA , Inteligência Artificial , Monitoramento Biológico , Ecossistema
11.
Mol Ecol Resour ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150904

RESUMO

Infectious diseases impact numerous organisms. Knowledge of host-pathogen interactions and host responses to infection is crucial for conservation and management. Obtaining this knowledge quickly is made increasingly possible by a variety of genomic approaches, yet, for many species the bottleneck to understanding this, remains access to appropriate samples and data. Lack of sample availability has also limited our understanding of how pathogens and the immune responses of hosts change over time. Archival materials may provide a way to explore pathogen emergence and host responses over multiple-possibly hundreds-of years. Here, we tested whether formalin-fixed paraffin-embedded (FFPE) tissue samples could be used to understand an unknown pathology, lamprey reddening syndrome (LRS), affecting pouched lampreys (Geotria australis). Our differential expression analyses of dermal tissues from four unaffected lampreys and eight affected lampreys collected in 2012 alluded to several potential agents associated with LRS. Interestingly, the pathways associated with viral infections were overrepresented in affected versus unaffected lamprey. Gene ontology analyses of the affected and non-affected lampreys also provided new insights into the largely understudied immune responses of pouched lampreys. Our work confirms that FFPE samples can be used to infer information about the transcriptional responses of a wildlife species affected by unknown historical pathologies/syndromes. In addition, the use of FFPE samples for transcriptomics offers many opportunities to investigate the genomic responses of a species to a variety of environmental changes. We conclude with a discussion about how to best sample and utilize these unique archival resources for future wildlife transcriptomic studies.

12.
Nucleic Acids Res ; 51(7): 3261-3269, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881756

RESUMO

In recent decades, study of DNA structure has largely been focused on the interrelationships between nucleotides at the level of nearest neighbours. A little-utilized approach to probing structure on a larger scale is non-denaturing bisulfite modification of genomic DNA in conjunction with high-throughput sequencing. This technique revealed a marked gradient in reactivity increasing towards the 5' end of poly-dC:dG mononucleotide repeats as short as two base pairs, suggesting that access of the anion may be greater at these points due to positive-roll bending not predicted by existing models. Consistent with this, the 5' ends of these repeats are strikingly enriched at positions relative to the nucleosome dyad that bend towards the major groove, while their 3' ends tend to sit outside these areas. Mutation rates are also higher at the 5' ends of poly-dC:dG when CpG dinucleotides are excluded. These findings shed light on the mechanisms underlying bending/flexibility of the DNA double helix as well as the sequences that facilitate DNA packaging.


Assuntos
DNA , Sulfitos , Modelos Moleculares , Conformação de Ácido Nucleico , DNA/genética , DNA/química
13.
Cell Rep ; 42(3): 112263, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930644

RESUMO

Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.


Assuntos
Petromyzon , Animais , Petromyzon/genética , Cromossomos/genética , DNA/genética , Genoma , Vertebrados/genética , Células Germinativas , Evolução Molecular , Filogenia
14.
Proc Natl Acad Sci U S A ; 120(7): e2201076120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749728

RESUMO

Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


Assuntos
Tartarugas , Animais , Ecossistema , Dinâmica Populacional
15.
Mol Ecol Resour ; 23(5): 990-1001, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36740220

RESUMO

Almost every animal trait is strongly associated with parasitic infection or the potential exposure to parasites. Despite this importance, one of the greatest challenges that researchers still face is to accurately determine the status and severity of the endoparasitic infection without killing and dissecting the host. Thus, the precise detection of infection with minimal handling of the individual will improve experimental designs in live animal research. Here, we quantified extracellular DNA from two species of endoparasitic worm that grow within the host body cavity, hairworms (phylum Nematomorpha) and mermithids (phylum Nematoda), from the frass of their insect host, a cave weta (Orthoptera: Rhaphidophoridae) and an earwig (Dermaptera: Forficulidae), respectively. Frass collection was done at two successive time periods, to test if parasitic growth correlated with relative DNA quantity in the frass. We developed and optimized two highly specific TaqMan assays, one for each parasite-specific DNA amplification. We were able to detect infection prevalence with 100% accuracy in individuals identified as infected through post-study dissections. An additional infection in earwigs was detected with the TaqMan assay alone, probably because some worms were either too small or degraded to observe during dissection. No difference in DNA quantity was detected between sampling periods, although future protocols could be refined to support such a trend. This study demonstrates that a noninvasive and minimally stressful method can be used to detect endoparasitic infection with greater accuracy than dissection alone, helping improve protocols for live animal studies.


Assuntos
Helmintos , Nematoides , Ortópteros , Animais , Insetos
16.
Mol Ecol Resour ; 23(4): 771-786, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36598115

RESUMO

Aquatic environmental DNA (eDNA) surveys are transforming how marine ecosystems are monitored. The time-consuming preprocessing step of active filtration, however, remains a bottleneck. Hence, new approaches that eliminate the need for active filtration are required. Filter-feeding invertebrates have been proven to collect eDNA, but side-by-side comparative studies to investigate the similarity between aquatic and filter-feeder eDNA signals are essential. Here, we investigated the differences among four eDNA sources (water; bivalve gill-tissue; sponges; and ethanol in which filter-feeding organisms were stored) along a vertically stratified transect in Doubtful Sound, New Zealand using three metabarcoding primer sets targeting fish and vertebrates. Combined, eDNA sources detected 59 vertebrates, while concurrent diver surveys observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was successfully extracted from the ethanol in which sponges were stored, although a reduced number of species were detected. Bivalve gill-tissue dissections, on the other hand, failed to reliably detect eDNA. Overall, our results show that vertebrate eDNA signals obtained from water samples and marine sponges are highly concordant. The strong similarity in eDNA signals demonstrates the potential of marine sponges as an additional tool for eDNA-based marine biodiversity surveys, by enabling the incorporation of larger sample numbers in eDNA surveys, reducing plastic waste, simplifying sample collection, and as a cost-efficient alternative. However, we note the importance to not detrimentally impact marine communities by, for example, nonlethal subsampling, specimen cloning, or using bycatch specimens.


Assuntos
DNA Ambiental , Poríferos , Animais , DNA Ambiental/genética , Ecossistema , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Biodiversidade , Vertebrados/genética , Peixes/genética , Água
17.
Mol Ecol Resour ; 23(3): 725-738, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36437603

RESUMO

The measurement of biodiversity is an integral aspect of life science research. With the establishment of second- and third-generation sequencing technologies, an increasing amount of metabarcoding data is being generated as we seek to describe the extent and patterns of biodiversity in multiple contexts. The reliability and accuracy of taxonomically assigning metabarcoding sequencing data have been shown to be critically influenced by the quality and completeness of reference databases. Custom, curated, eukaryotic reference databases, however, are scarce, as are the software programs for generating them. Here, we present crabs (Creating Reference databases for Amplicon-Based Sequencing), a software package to create custom reference databases for metabarcoding studies. crabs includes tools to download sequences from multiple online repositories (i.e., NCBI, BOLD, EMBL, MitoFish), retrieve amplicon regions through in silico PCR analysis and pairwise global alignments, curate the database through multiple filtering parameters (e.g., dereplication, sequence length, sequence quality, unresolved taxonomy, inclusion/exclusion filter), export the reference database in multiple formats for immediate use in taxonomy assignment software, and investigate the reference database through implemented visualizations for diversity, primer efficiency, reference sequence length, database completeness and taxonomic resolution. crabs is a versatile tool for generating curated reference databases of user-specified genetic markers to aid taxonomy assignment from metabarcoding sequencing data. crabs can be installed via docker and is available for download as a conda package and via GitHub (https://github.com/gjeunen/reference_database_creator).


Assuntos
Braquiúros , Animais , Reprodutibilidade dos Testes , Código de Barras de DNA Taxonômico/métodos , Software , Eucariotos
18.
PLoS One ; 17(9): e0273779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048785

RESUMO

Sex change occurs as a usual part of the life cycle for many teleost fish and the modifications involved (behavioural, gonadal, morphological) are well studied. However, the mechanism that transduces environmental cues into the molecular cascade that underlies this transformation remains unknown. Cortisol, the main stress hormone in fish, is hypothesised to be a key factor linking environmental stimuli with sex change by initiating gene expression changes that shift steroidogenesis from oestrogens to androgens but this notion remains to be rigorously tested. Therefore, this study aimed to experimentally test the role of cortisol as an initiator of sex change in a protogynous (female-to-male) hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). We also sought to identify potential key regulatory factors within the head kidney that may contribute to the initiation and progression of gonadal sex change. Cortisol pellets were implanted into female spotty wrasses under inhibitory conditions (presence of a male), and outside of the optimal season for natural sex change. Histological analysis of the gonads and sex hormone analyses found no evidence of sex change after 71 days of cortisol treatment. However, expression analyses of sex and stress-associated genes in gonad and head kidney suggested that cortisol administration did have a physiological effect. In the gonad, this included upregulation of amh, a potent masculinising factor, and nr3c1, a glucocorticoid receptor. In the head kidney, hsd11b2, which converts cortisol to inactive cortisone to maintain cortisol balance, was upregulated. Overall, our results suggest cortisol administration outside of the optimal sex change window is unable to initiate gonadal restructuring. However, our expression data imply key sex and stress genes are sensitive to cortisol. This includes genes expressed in both gonad and head kidney that have been previously implicated in early sex change in several sex-changing species.


Assuntos
Hidrocortisona , Perciformes , Androgênios/metabolismo , Animais , Feminino , Peixes/metabolismo , Gônadas/metabolismo , Hidrocortisona/metabolismo , Masculino , Perciformes/metabolismo , Processos de Determinação Sexual
19.
BMC Biol ; 20(1): 185, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038899

RESUMO

BACKGROUND: In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS: We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS: Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.


Assuntos
Exposição Paterna , Peixe-Zebra , Aclimatação , Animais , Epigênese Genética , Humanos , Hipóxia/genética , Masculino , Peixe-Zebra/genética
20.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35972389

RESUMO

The European earwig Forficula auricularia is an important model for studies of maternal care, sexual selection, sociality, and host-parasite interactions. However, detailed genetic investigations of this species are hindered by a lack of genomic resources. Here, we present a high-quality hybrid genome assembly for Forficula auricularia using Nanopore long-reads and 10× linked-reads. The final assembly is 1.06 Gb in length with 31.03% GC content. It consists of 919 scaffolds with an N50 of 12.55 Mb. Half of the genome is present in only 20 scaffolds. Benchmarking Universal Single-Copy Orthologs scores are ∼90% from 3 sets of single-copy orthologs (eukaryotic, insect, and arthropod). The total repeat elements in the genome are 64.62%. The MAKER2 pipeline annotated 12,876 protein-coding genes and 21,031 mRNAs. Phylogenetic analysis revealed the assembled genome as that of species B, one of the 2 known genetic subspecies of Forficula auricularia. The genome assembly, annotation, and associated resources will be of high value to a large and diverse group of researchers working on dermapterans.


Assuntos
Auricularia , Genômica , Animais , Genoma , Insetos , Anotação de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...