Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 11(1): 174-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22084170

RESUMO

Wee1 is a critical component of the G(2)-M cell-cycle checkpoint control and mediates cell-cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by a selective small molecule inhibitor MK1775 can abrogate G(2)-M checkpoint, resulting in premature mitotic entry and cell death. MK1775 has recently been tested in preclinical and clinical studies of human carcinoma to enhance the cytotoxic effect of DNA-damaging agents. However, its role in mesenchymal tumors, especially as a single agent, has not been explored. Here, we studied the cytotoxic effect of MK1775 in various sarcoma cell lines and patient-derived tumor explants ex vivo. Our data show that MK1775 treatment at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. In MK1775-treated cells, CDC2 activity was enhanced, as determined by decreased inhibitory phosphorylation of tyrosine-15 residue and increased expression of phosphorylated histone H3, a marker of mitotic entry. The cytotoxic effect of Wee1 inhibition on sarcoma cells seems to be independent of p53 status as all sarcoma cell lines with different p53 mutation were highly sensitive to MK1775 treatment. Finally, in patient-derived sarcoma samples, we showed that MK1775 as a single agent causes significant apoptotic cell death, suggesting that Wee1 inhibition may represent a novel approach in the treatment of sarcomas.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Mitose/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sarcoma/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B/metabolismo , Quinases Ciclina-Dependentes , Histonas/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Pirimidinonas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA