Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0274923, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707427

RESUMO

The yeast strain Yarrowia lipolytica IPS 21 was tested for its ability to degrade potentially toxic chrome-tanned leather shavings (CTLS) in a liquid environment. Biological and chemical parameters were monitored during a 48-h period of biotransformation of the protein-rich waste. CTLS was added at a concentration of 0.1-4% (wt/wt) to a modified YPG medium (15 g L-1 yeast extract and 5 g L-1 NaCl). Biodegradation and bioconversion were performed in a one-step process. It was found that the higher degradation rate depended on the activity of the proteases and the pH of the medium, but not on the initial inoculum ratio and the activity of the dehydrogenase. The highest efficiency of the process was obtained for 4% (wt/wt) CTLS on day 2 (degradation rate 58-67%, biomass production 2.11-2.20 g L-1, protease activity 312 U mg-1 protein, and pH 9.20). Our results showed that total chromium was probably not transported across the cytoplasmic membrane of Y. lipolytica IPS21 and that chromium (III) was not oxidized to chromium (VI). The phytotoxicity of selected amino acid supernatants [2.5% (vol/vol)] was tested after the bioconversion process. It was found that the supernatants had a stimulating effect on the plants tested. The root elongation was 29-28% higher than that of the reference samples. This result makes Y. lipolytica IPS21 a potential candidate for safely converting potentially toxic protein-rich wastes into valuable products without enzyme isolation, e.g., amino acid fertilizers. IMPORTANCE Enzyme technologies have the greatest practical relevance to environmental trends. Overcoming the barrier of the high cost of carbon substrates used for biotransformation is the main challenge of these methods. The huge potential of the use of extracellular proteases of Yarrowia species or amino acids in various industries indicates the need for the extension of basic research on waste as a carbon source for this yeast. The experiments demonstrated that it is possible to use Y. lipolytica IPS21 for bioconversion of chrome-tanned leather shavings (CTLS) in a single-step process and to produce high-value amino acid supernatant without having an isolated enzyme. In our study, we show the effect of 2.5% (vol/vol) CTLS supernatant obtained from Y. lipolytica IPS21 on the elongation of the root system of selected plants and provide information on the effect of environmental factors on the efficiency of the bioconversion and the migration of chromium.

2.
Water Sci Technol ; 74(5): 1227-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642842

RESUMO

The effects of 1-decyl-3-methylimidazolium bromide on activated sludge process and microbial composition were investigated. Ionic liquid (IL) was dosed continuously to the laboratory activated sludge system at an influent concentration from 1 to 20 mg l(-1) for about 1 month. As compared to the control test, mean values of degree of chemical oxygen demand removal and degree of biochemical oxygen demand removal were almost remaining constant at a high level, equaling 92.6% and 98.1%, respectively. In addition, no influence of IL on size and shape of flocs was observed. The values of the sludge biotic index indicate that sludge exposed on IL was stable and very well colonized with good biological activity. Increases in Proteobacteria (mainly Variovorax sp., Vogesella sp., Hydrogenophaga sp.), Bacteroidetes (mainly Lewinella sp., Haliscomenobacter sp., Runella sp.) and Nitrospirae were detected in sludge adapted to IL compared to the control system. The results showed that activated sludge can adapt to IL present in wastewater.


Assuntos
Brometos/química , Proteobactérias , Águas Residuárias , Bactérias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos/química
3.
Water Sci Technol ; 68(12): 2654-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24355854

RESUMO

Data concerning the biodegradability and ecotoxicity of ionic liquids (ILs) obtained so far are insufficient in the context of IL removal from wastewater in activated sludge systems. Thus, in this work the selected imidazolium ionic liquids and two organic solvents (methanol and acetone) were tested with respect to their influence on activated sludge processes, particularly on the morphology of sludge flocs. The presence of ionic liquids with the chemical structure of 1-alkyl-3-methyl imidazolium bromide in wastewater did not deteriorate biological wastewater treatment processes if their concentration was not higher than 5 mg l(-1). Regarding the structure of the ILs studied, the longer the alkyl substituent was, the stronger the effect on sludge flocs. The highest decrease in activated sludge floc area and biomass concentration was exerted by the ionic liquid with the longest alkyl chain, i.e. 1-decyl-3-methylimidazolium bromide. The action of both methanol and acetone on floc size, activated sludge concentration and efficiency of organic pollutants removal was weaker compared to all tested 1-alkyl-3-methyl imidazolium bromides.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Esgotos/microbiologia , Poluentes Químicos da Água/química , Purificação da Água/métodos , Acetona/química , Acetona/isolamento & purificação , Aerobiose , Análise da Demanda Biológica de Oxigênio , Imidazóis/isolamento & purificação , Líquidos Iônicos/isolamento & purificação , Metanol/química , Metanol/isolamento & purificação , Esgotos/química , Solventes/química , Solventes/isolamento & purificação , Propriedades de Superfície , Poluentes Químicos da Água/isolamento & purificação
4.
J Biosci Bioeng ; 115(1): 71-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22925899

RESUMO

The aim of this study was to estimate the biodegradability of the selected imidazolium ionic liquids and to determine the kinetic parameters for the biological treatment of wastewater containing these ionic liquids. Biodegradability was evaluated with the help of the Organisation for Economic Co-operation and Development (OECD) tests, while oxygen uptake rate (OUR) tests were made in order to calculate the values of Monod kinetic parameters. The results obtained from both types of the tests showed that ionic liquids of chemical structure of 1-alkyl-3-methyl imidazolium bromide were poorly biodegradable and co-biodegradable compounds, although their biodegradability increased with the elongation of the alkyl chain length. At the same time the presence of the imidazolium-based ionic liquids in wastewater at concentration of 50 mg l(-1) did not inhibit biomass growth as well as did not decrease the affinity of substrate to biomass. The values of both Monod kinetic parameters, i.e., maximum specific growth rate (µ(max)) and half saturation constant (K(S)), increased with the increase in chain length of the alkyl substituent.


Assuntos
Imidazóis/química , Imidazóis/isolamento & purificação , Líquidos Iônicos/isolamento & purificação , Águas Residuárias/química , Biodegradação Ambiental , Biomassa , Líquidos Iônicos/química , Cinética , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA