Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858388

RESUMO

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Distrofina , Músculos , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Distrofina/metabolismo , Distrofina/genética , Músculos/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas Desgrenhadas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Membrana Celular/metabolismo , Complexo de Proteínas Associadas Distrofina/metabolismo , Complexo de Proteínas Associadas Distrofina/genética , Proteínas Wnt/metabolismo , Transdução de Sinais
2.
Mol Genet Metab ; 134(1-2): 195-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34412939

RESUMO

Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.


Assuntos
Proteínas de Transporte/genética , Epilepsia/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Criança , Feminino , Edição de Genes , Humanos , Patologia Molecular , Canais de Potássio/metabolismo
3.
Genetics ; 215(3): 665-681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32444379

RESUMO

We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17/VAChT, cha-1/ChAT, cho-1/ChT, and ace-2/AChE), glutamate (eat-4/VGluT), and γ-aminobutyric acid (unc-25/GAD, unc-46/LAMP, and unc-47/VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17/VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17/VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Pleiotropia Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/classificação , Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
4.
Nat Commun ; 10(1): 787, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770809

RESUMO

Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels.


Assuntos
Potenciais da Membrana/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila , Evolução Molecular , Humanos , Invertebrados , Potenciais da Membrana/genética , Mutação/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Vertebrados
5.
Genetics ; 206(3): 1251-1269, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684604

RESUMO

The nervous system of most animals is sexually dimorphic but such dimorphisms are generally poorly mapped on an anatomical, cellular, and molecular level. The adult nervous system of the nematode Caenorhabditis elegans displays a number of clearly defined anatomical sexual dimorphisms, but molecular features of sexually dimorphic neurons remain sparse. In this resource paper, we provide a comprehensive atlas of neurotransmitters used in the nervous system of the male and compare it to that of the hermaphrodite. Among the three major neurotransmitter systems, acetylcholine (ACh) is the most frequently used, followed by glutamate (Glu), and lastly γ-aminobutyric acid (GABA). Many male-specific neurons utilize multiple neurotransmitter systems. Interestingly, we find that neurons that are present in both sexes alter their neurotransmitter usage depending on the sex of the animal. One neuron scales up its usage of ACh, another becomes serotonergic in males, and another one adds a new neurotransmitter (glutamate) to its nonsex-specific transmitter (ACh). In all these cases, neurotransmitter changes are correlated with substantial changes in synaptic connectivity. We assembled the neurotransmitter maps of the male-specific nervous system into a comprehensive atlas that describes the anatomical position of all the neurons of the male-specific nervous system relative to the sex-shared nervous system. We exemplify the usefulness of the neurotransmitter atlas by using it as a tool to define the expression pattern of a synaptic organizer molecule in the male tail. Taken together, the male neurotransmitter atlas provides an entry point for future functional and developmental analysis of the male nervous system.


Assuntos
Acetilcolina/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Glutâmico/metabolismo , Serotonina/metabolismo , Caracteres Sexuais , Sinapses/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Feminino , Masculino , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Sinapses/classificação , Transmissão Sináptica
6.
Elife ; 52016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27740909

RESUMO

Neurotransmitter maps are important complements to anatomical maps and represent an invaluable resource to understand nervous system function and development. We report here a comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA, revealing twice as many GABA-positive neuron classes as previously reported. We define previously unknown glia-like cells that take up GABA, as well as 'GABA uptake neurons' which do not synthesize GABA but take it up from the extracellular environment, and we map the expression of previously uncharacterized ionotropic GABA receptors. We use the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Neurônios GABAérgicos , Rede Nervosa , Sistema Nervoso/anatomia & histologia , Animais , Redes Reguladoras de Genes
7.
J Biol Chem ; 286(38): 33501-10, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795674

RESUMO

The dystrophin-associated protein complex (DAPC) consists of several transmembrane and intracellular scaffolding elements that have been implicated in maintaining the structure and morphology of the vertebrate neuromuscular junction (NMJ). Genetic linkage analysis has identified loss-of-function mutations in DAPC genes that give rise to degenerative muscular dystrophies. Although much is known about the involvement of the DAPC in maintaining muscle integrity, less is known about the precise contribution of the DAPC in cell signaling events. To better characterize the functional role of the DAPC at the NMJ, we used electrophysiology, immunohistochemistry, and fluorescent labeling to directly assess cholinergic synaptic transmission, ion channel localization, and muscle excitability in loss-of-function (lf) mutants of Caenorhabditis elegans DAPC homologues. We found that all DAPC mutants consistently display mislocalization of the Ca(2+)-gated K(+) channel, SLO-1, in muscle cells, while ionotropic acetylcholine receptor (AChR) expression and localization at the NMJ remained unaltered. Synaptic cholinergic signaling was also not significantly impacted across DAPC(lf) mutants. Consistent with these findings and the postsynaptic mislocalization of SLO-1, we observed an increase in muscle excitability downstream of cholinergic signaling. Based on our results, we conclude that the DAPC is not involved in regulating AChR architecture at the NMJ, but rather functions to control muscle excitability, in an activity-dependent manner, through the proper localization of SLO-1 channels.


Assuntos
Potenciais de Ação/fisiologia , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Complexo de Proteínas Associadas Distrofina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculos/fisiologia , Alelos , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Colina/metabolismo , Complexo de Proteínas Associadas Distrofina/genética , Genes de Helmintos/genética , Proteínas de Fluorescência Verde/metabolismo , Células Musculares/metabolismo , Mutação/genética , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Transporte Proteico , Receptores Colinérgicos/metabolismo , Transdução de Sinais
9.
Nature ; 461(7266): 992-6, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19794415

RESUMO

Efficient neurotransmission at chemical synapses relies on spatial congruence between the presynaptic active zone, where synaptic vesicles fuse, and the postsynaptic differentiation, where neurotransmitter receptors concentrate. Diverse molecular systems have evolved to localize receptors at synapses, but in most cases, they rely on scaffolding proteins localized below the plasma membrane. A few systems have been suggested to control the synaptic localization of neurotransmitter receptors through extracellular interactions, such as the pentraxins that bind AMPA receptors and trigger their aggregation. However, it is not yet clear whether these systems have a central role in the organization of postsynaptic domains in vivo or rather provide modulatory functions. Here we describe an extracellular scaffold that is necessary to cluster acetylcholine receptors at neuromuscular junctions in the nematode Caenorhabditis elegans. It involves the ectodomain of the previously identified transmembrane protein LEV-10 (ref. 6) and a novel extracellular protein, LEV-9. LEV-9 is secreted by the muscle cells and localizes at cholinergic neuromuscular junctions. Acetylcholine receptors, LEV-9 and LEV-10 are interdependent for proper synaptic localization and physically interact based on biochemical evidence. Notably, the function of LEV-9 relies on eight complement control protein (CCP) domains. These domains, also called 'sushi domains', are usually found in proteins regulating complement activity in the vertebrate immune system. Because the complement system does not exist in protostomes, our results suggest that some of the numerous uncharacterized CCP proteins expressed in the mammalian brain might be directly involved in the organization of the synapse, independently from immune functions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Receptores Colinérgicos/metabolismo , Proteínas Virais/química , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Especificidade de Órgãos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...