Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7186, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938552

RESUMO

Promoters are important in catalysis, but the atomistic details of their function and particularly their role in reaction instabilities such as kinetic phase transitions and oscillations are often unknown. Employing hydrogen oxidation as probe reaction, a Rh nanotip for mimicking a single Rh nanoparticle and field electron microscopy for in situ monitoring, we demonstrate a La-mediated local catalytic effect. The oscillatory mode of the reaction provides a tool for studying the interplay between different types of reaction pacemakers, i.e., specific local surface atomic configurations that initiate kinetic transitions. The presence of La shifts the bistable reaction states, changes the oscillation pattern and deactivates one of two pacemaker types for the La-free surface. The observed effects originate from the La-enhanced oxygen activation on the catalyst. The experimental observations are corroborated by micro-kinetic model simulations comprising a system of 25 coupled oscillators.

2.
Top Catal ; 66(15-16): 1129-1142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724312

RESUMO

As supported CuO is well-known for low temperature activity, CuO/CeO2 nanosphere catalysts were synthesized and tested for CO oxidation and preferential oxidation of CO (PROX) in excess H2. For the first reaction, ignition was observed at 95 °C, whereas selective PROX occurred in a temperature window from 50 to 100 °C. The catalytic performance was independent of the initial oxidation state of the catalyst (CuO vs. Cu0), suggesting that the same active phase is formed under reaction conditions. Density functional modeling was applied to elucidate the intermediate steps of CO oxidation, as well as those of the comparably less feasible H2 transformation. In the simulations, various Cu and vacancy sites were probed as reactive centers enabling specific pathways. Supplementary Information: The online version contains supplementary material available at 10.1007/s11244-023-01848-x.

3.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36584240

RESUMO

Driving metal-cluster-catalyzed high-temperature chemical reactions by sunlight holds promise for the development of negative-carbon-footprint industrial catalysis, which has yet often been hindered by the poor ability of metal clusters to harvest and utilize the full spectrum of solar energy. Here, we report the preparation of Mo2TiC2 MXene-supported Ru clusters (Ru/Mo2TiC2) with pronounced broadband sunlight absorption ability and high sintering resistance. Under illumination of focused sunlight, Ru/Mo2TiC2 can catalyze the reverse water-gas shift (RWGS) reaction to produce carbon monoxide from the greenhouse gas carbon dioxide and renewable hydrogen with enhanced activity, selectivity, and stability compared to their nanoparticle counterparts. Notably, the CO production rate of MXene-supported Ru clusters reached 4.0 mol·gRu-1·h-1, which is among the best reported so far for photothermal RWGS catalysts. Detailed studies suggest that the production of methane is kinetically inhibited by the rapid desorption of CO from the surface of the Ru clusters.

4.
Nat Commun ; 13(1): 6176, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261440

RESUMO

Nanoparticle (NP) catalysts are ubiquitous in energy systems, chemical production, and reducing the environmental impact of many industrial processes. Under reactive environments, the availability of catalytically active sites on the NP surface is determined by its dynamic structure. However, atomic-scale insights into how a NP surface reconstructs under reaction conditions and the impact of the reconstruction on catalytic activity are still lacking. Using operando transmission electron microscopy, we show that Pd NPs exhibit periodic round-to-flat transitions altering their facets during CO oxidation reaction at atmospheric pressure and elevated temperatures. This restructuring causes spontaneous oscillations in the conversion of CO to CO2 under constant reaction conditions. Our study reveals that the oscillatory behavior stems from the CO-adsorption-mediated periodic restructuring of the nanocatalysts between high-index-faceted round and low-index-faceted flat shapes. These atomic-scale insights into the dynamic surface properties of NPs under reactive conditions play an important role in the design of high-performance catalysts.

5.
J Phys Condens Matter ; 34(35)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35588721

RESUMO

Co3O4is a well-known low temperature CO oxidation catalyst, but it often suffers from deactivation. We have thus examined room temperature (RT) CO oxidation on Co3O4catalysts by operando DSC, TGA and MS measurements, as well as by pulsed chemisorption to differentiate the contributions of CO adsorption and reaction to CO2. Catalysts pretreated in oxygen at 400 °C are most active, with the initial interaction of CO and Co3O4being strongly exothermic and with maximum amounts of CO adsorption and reaction. The initially high RT activity then levels-off, suggesting that the oxidative pretreatment creates an oxygen-rich reactive Co3O4surface that upon reaction onset loses its most active oxygen. This specific active oxygen is not reestablished by gas phase O2during the RT reaction. When the reaction temperature is increased to 150 °C, full conversion can be maintained for 100 h, and even after cooling back to RT. Apparently, deactivating species are avoided this way, whereas exposing the active surface even briefly to pure CO leads to immediate deactivation. Computational modeling using DFT helped to identify the CO adsorption sites, determine oxygen vacancy formation energies and the origin of deactivation. A new species of CO bonded to oxygen vacancies at RT was identified, which may block a vacancy site from further reaction unless CO is removed at higher temperature. The interaction between oxygen vacancies was found to be small, so that in the active state several lattice oxygen species are available for reaction in parallel.

6.
ACS Mater Lett ; 3(12): 1652-1659, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34901871

RESUMO

Cascade catalysis of reverse water gas shift (RWGS) and well-established CO hydrogenation holds promise for the conversion of greenhouse gas CO2 and renewable H2 into liquid hydrocarbons and methanol under mild conditions. However, it remains a big challenge to develop low-temperature RWGS catalysts with high activity, selectivity, and stability. Here, we report the design of an efficient RWGS catalyst by encapsulating ruthenium clusters with the size of 1 nm inside hollow silica shells. The spatially confined structure prevents the sintering of Ru clusters while the permeable silica layer allows the diffusion of gaseous reactants and products. This catalyst with reduced particle sizes not only inherits the excellent activity of Ru in CO2 hydrogenation reactions but also exhibits nearly 100% CO selectivity and superior stability at 200-500 °C. The ability to selectively produce CO from CO2 at relatively low temperatures paves the way for the production of value-added fuels from CO2 and renewable H2.

7.
Nat Commun ; 12(1): 6098, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671045

RESUMO

The selectivity of 1-butene hydrogenation/isomerization on Pd catalysts is known to be particle size dependent. Here we show that combining well-defined model catalysts, atmospheric pressure reaction kinetics, DFT calculations and microkinetic modeling enables to rationalize the particle size effect based on the abundance and the specific properties of the contributing surface facets.

8.
Nat Commun ; 11(1): 2133, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358583

RESUMO

The dynamical structure of a catalyst determines the availability of active sites on its surface. However, how nanoparticle (NP) catalysts re-structure under reaction conditions and how these changes associate with catalytic activity remains poorly understood. Using operando transmission electron microscopy, we show that Pd NPs exhibit reversible structural and activity changes during heating and cooling in mixed gas environments containing O2 and CO. Below 400 °C, the NPs form flat low index facets and are inactive towards CO oxidation. Above 400 °C, the NPs become rounder, and conversion of CO to CO2 increases significantly. This behavior reverses when the temperature is later reduced. Pt and Rh NPs under similar conditions do not exhibit such reversible transformations. We propose that adsorbed CO molecules suppress the activity of Pd NPs at lower temperatures by stabilizing low index facets and reducing the number of active sites. This hypothesis is supported by thermodynamic calculations.

10.
J Phys Chem A ; 122(35): 7042-7050, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30141334

RESUMO

Mixed-metal oxides, e.g., V-Mo and Bi-Mo, are promising selective oxidation catalysts. Yet, their intricate chemical composition and electronic structure often confound DFT methods. This study addresses problems arising from the simultaneous presence of two kinds of transition metals, by probing eight functionals-five hybrid functionals (MN15, M06, PBE0-D3, B3LYP-D3, and TPSSh-D3), the meta-GGA functional M06-L-D3, the range-separated functional ωB97XD, and the GGA functional PBE-D3. We examine the ability of these functionals to localize reducing electrons, and to reproduce reaction energies from CCSD(T) calculations. Accordingly, hybrid functionals containing 20% or more exact exchange perform considerably better in both tests. The B3LYP-D3 approach exhibits the lowest overall mean absolute deviation of reaction energies (OMAD), 21 kJ mol-1, and gave electron distributions as expected from the local lattice structure according to the pseudo-Jahn-Teller effect. MN15 and PBE0-D3 reproduced the electron distributions, but bore slightly higher OMAD values, at 31 and 32 kJ mol-1. Despite acceptable OMAD values, M06 (28 kJ mol-1) and TPSSh (23 kJ mol-1) in some cases did not yield the expected electron distributions. The range-separated functional ωB97XD experienced the opposite problem, yielding correct electron distributions but a poor OMAD of 41 kJ mol-1. M06-L-D3 and PBE-D3 performed relatively poorly, regarding the electron distribution and the OMAD values, 39 and 65 kJ mol-1, respectively.

13.
Chem Rec ; 16(5): 2388-2404, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27523734

RESUMO

Much-needed progress in catalytic science, in particular regarding heterogeneous catalysis, is associated with the transition from largely empirical research to rational design of new and improved catalysts and catalytic processes. To achieve this goal, fundamental atomic-scale understanding of catalytic processes is required, which can be achieved with the help of theoretical modeling, in particular, using methods based on quantum chemical calculations. In this review we illustrate the current progress by discussing examples from the authors' work in which complex reaction networks involving organic molecules on transition-metal surfaces have been studied using density functional theory. We review some of the success stories where theory helped to interpret experimental observations and provided atomistic insights into the mechanisms, which were not definitively known before. In other cases, partial disagreement between theoretical results and existing experimental evidence calls for further reconciliation studies.

14.
Dalton Trans ; 44(31): 13778-95, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26126874

RESUMO

In this review we address recent efforts from experimental and theoretical side to study MoVO-type mixed metal oxides (MMOs) and their properties. We illustrate how structures of MMOs have been evaluated using a large variety of experimental techniques, such as electron microscopy, neutron diffraction, and X-ray diffraction. Furthermore, we discuss the current view on structure-catalysis correlations, derived from recent experiments. In a second part, we examine useful tools of theoretical chemistry for exploring MoVO-type systems. We discuss the need for using hybrid DFT methods and we analyze how, in the context of MMOs studies, semi-local DFT approximations can encounter problems due to a notable self-interaction error when describing oxidic species and reactions on them. In addition, we discuss various aspects of the model that are important when attempting to map complex MMO systems.

15.
Phys Chem Chem Phys ; 17(23): 15324-30, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25993978

RESUMO

We studied the C-O cleavage of phenolate and catecholate at step sites of a Ru catalyst using periodic DFT methods at the GGA level. Both C-O scission steps are associated with activation barriers of about 75 kJ mol(-1), hence are significantly more facile than the analogous reactions on Ru terraces. With these computational results, we offer an interpretation of recent experiments on the hydrodeoxygenation of guaiacol (2-methoxyphenol) over Ru/C. We hypothesize that the experimentally observed dependency of the product selectivity on the H2 pressure is related to the availability of step sites on a Ru catalyst.


Assuntos
Catecóis/química , Hidroxibenzoatos/química , Modelos Moleculares , Rutênio/química , Carbono/química , Catálise , Guaiacol/química , Hidrogênio/química , Oxigênio/química , Termodinâmica
16.
J Phys Chem A ; 119(17): 4051-6, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25876734

RESUMO

We examined computationally the adsorption of CO on various sites of (111) facets of the model clusters Pt79 and Pt225 with the semilocal exchange-correlation functionals PBE, TPSS, and M06L as well as their corresponding hybrid DFT variants PBE0, TPSSh, and M06. The adsorption of CO molecules on Pt(111) is a well-known challenge for the Kohn-Sham DFT approach because one has to treat adequately the electronic structure of the metallic moiety and simultaneously control the self-interaction in the adsorbate. Indeed, in the context of the so-called CO puzzle, hybrid DFT methods do not appear to be beneficial.

17.
J Phys Chem A ; 118(16): 3004-13, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24712497

RESUMO

For an extended set of density functionals (BP86, BLYP, B3LYP, B3PW91, PBE, PBE0, mPWPW, MPW1K, M06-L, M06, MPW3LYP, TPSS) we explored the key steps of four mechanisms of ethylene hydrosilylation (Glaser-Tilley, Chalk-Harrod, modified Chalk-Harrod, and σ-bond metathesis) by a Rh(I) catalyst, previously studied at the B3LYP level. The Chalk-Harrod and the σ-bond metathesis mechanisms were determined to be preferred for all these functionals. The preference among these two mechanisms and the corresponding highest relative barriers (6.6-11.8 kcal·mol(-1)) depend on the functional. To a certain extent, the differences in the description of the reaction can be traced back to the correlation part of the functionals. For the most notable functional-dependent barrier, similar values were calculated when the LYP correlation functional and the functionals M06-L and M06 were employed, but distinctively different values resulted from the functionals PBE, PW91, and TPSS.

18.
J Comput Chem ; 35(10): 809-19, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24550154

RESUMO

We evaluated the accuracy of periodic density functional calculations for adsorption enthalpies of water, alkanes, and alcohols in silicalite and HZSM-5 zeolites using a gradient-corrected density functional with empirical dispersion corrections (PBE-D) as well as a nonlocal correlation functional (vdW-DF2). Results of both approaches agree in acceptable fashion with experimental adsorption energies of alcohols in silicalite, but the adsorption energies for n-alkanes in both zeolite models are overestimated, by 21-46 kJ mol(-1). For PBE-D calculations, the adsorption of alkanes is exclusively determined by the empirical dispersion term, while the generalized gradient approximation-DFT part is purely repulsive, preventing the molecule to come too close to the zeolite walls. The vdW-DF2 results are comparable to those of PBE-D calculations, but the latter values are slightly closer to the experiment in most cases. Thus, both computational approaches are unable to reproduce available experimental adsorption energies of alkanes in silicalite and HZSM-5 zeolite with chemical accuracy.

19.
J Chem Theory Comput ; 10(10): 4408-16, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26588138

RESUMO

We present the first application of hybrid density functional theory (DFT) methods to larger transition-metal clusters. To assess such functionals for this class of systems, we compare the performance of three modern hybrid DFT methods (PBE0, TPSSh, M06) and their semilocal counterparts (PBE, TPSS, M06L) regarding average bond distances and binding energies per atom for a series of octahedral model clusters Mn (M = Ni, Pd, Pt; n = 13, 38, 55, 79, 116). With application to large particles in mind, we extrapolated the results to their respective bulk limits and compared them to experimental values. In some cases, average nearest-neighbor distances are notably overestimated by the PBE0 and M06 hybrid functionals. Results on energies allow a grouping of the tested functionals into sets of similar behavior for the three metals studied. Among the methods examined, the TPSSh hybrid density functional shows the best overall performance.

20.
Chemistry ; 19(37): 12526-36, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23893573

RESUMO

The strong organoborane Lewis acid B(C6F5)3 catalyzes the polymerization of phenylsilane at elevated temperatures forming benzene and SiH4 as side-products. The resulting polymer is a branched polysilane with an irregular substitution pattern, as revealed by 2D NMR spectroscopy. Having explored the mechanism of this novel metal-free polymerization by computational chemistry methods at the DFT level, we have suggested that unusual cationic active species, namely monomer-stabilized silyl cations, propagate the polymerization. Hydride abstraction of SiH3 moiety by the catalyst in the initiation step was found to be kinetically preferred by around 9 kcal mol(-1) over activation by coordination of the monomer at the aromatic ring. The formation of linear Si-Si bonds during propagation was calculated to be less favorable than branching and ligand scrambling, which accounts for the branched and highly substituted form of the polymer that was obtained. This novel type of polymerization bears the potential for further optimization with respect to degree of polymerization and structure control for both primary as well as secondary silanes, which can be polymerized by sterically less hindered boranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...