Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299273

RESUMO

Near the coast of China, a large amount of sediment is produced during construction work. In order to mitigate the environmental damage caused by sediment and enhance the performance of rubber-modified asphalt effectively, solidified silt material and waste rubber were prepared to modify asphalt, and its macroscopic properties, such as viscosity and chemical composition, were determined via a routine physical test, DSR, Fourier Transform Infrared Spectroscopy (FTIR), and Fluorescence Microscopy (FM). The results show that, with the increase in powder particles and the addition of a certain amount of hardened mud, the mixing and compaction temperature of modified asphalt can be significantly increased-still reaching the design standard. In addition, the high thermal stability and fatigue resistance of the modified asphalt were clearly better than those of the ordinary asphalt. From the FTIR analysis, rubber particles and hardened silt only exhibited mechanical agitation with the asphalt. Considering that excessive silt might result in the aggregation of matrix asphalt, the addition of an appropriate amount of hardened solidified silt material can eliminate the aggregation. Therefore, the performance of modified asphalt was optimum when solidified silt was added. Our research can provide an effective theoretical basis and reference values for the practical application of compound-modified asphalt. Therefore, 6%HCS(6:4)-CRMA have better performance. Compared to ordinary rubber-modified asphalt, the composite-modified asphalt binder has better physical properties and a more suitable construction temperature. The composite-modified asphalt uses discarded rubber and silt as raw materials, which can effectively protect the environment. Meanwhile, the modified asphalt has excellent rheological properties and fatigue resistance.

2.
Materials (Basel) ; 12(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216747

RESUMO

Lowering the temperature of the road surface is one efficient way to alleviate the urban heat island effect. Therefore water-retaining asphalt mixture was produced by adding super absorbent polymer (SAP) containing cement mortar to the porous asphalt mixture. In this study, the water absorption capacity, mechanical strength and fluidity of the cured water-retaining mortar were investigated to determine the optimum SAP dosage in water-retaining mortar. Furthermore, the microstructure of the hardened water-retaining mortar was studied using scanning electron microscopy (SEM) to determine the morphology and distribution of SAP in the final product, which may help to understand the influence of SAP on water retention performance and decipher its underlying mechanism. Compared to the raw porous asphalt mixture, the water-retaining asphalt mixture showed good moisture susceptibility (retained stability (RS) ≥ 88.2%, tensile strength ratio (TSR) ≥ 81.8%), good rutting resistance (9336-10,552 times/mm) and low temperature crack resistance (3383-3621 MPa), as well as significant cooling effects (10-12 °C). The results illustrate that the prepared SAP water-retaining asphalt mixture has good potential in reducing dust and enhancing road performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA