Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37695523

RESUMO

B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.


Assuntos
Artrite , Doenças Autoimunes , Humanos , Camundongos , Ratos , Animais , Linfócitos T Reguladores , Interleucina-10 , Autoantígenos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37392014

RESUMO

Aims: NCF1, a subunit of the NADPH oxidase 2 (NOX2), first described the expression in neutrophils and macrophages and participated in the pathogenesis from various systems. However, there are controversial findings on the role of NCF1 in different kinds of kidney diseases. In this study, we aim to pinpoint the specific role of NCF1 in the progression of renal fibrosis induced by obstruction. Results: In this study, NCF1 expression was upregulated in kidney biopsies of chronic kidney disease patients. The expression level of all subunits of the NOX2 complex was also significantly increased in the unilateral ureteral obstruction (UUO) kidney. Then, we used wild-type mice and Ncf1 mutant mice (Ncf1m1j mice) to perform UUO-induced renal fibrosis. Results demonstrated that Ncf1m1j mice exhibited mild renal fibrosis but increased macrophages count and CD11b+Ly6Chi macrophage proportion. Next, we compared the renal fibrosis degree between Ncf1m1j mice and Ncf1 macrophage-rescued mice (Ncf1m1j.Ncf1Tg-CD68 mice). We found that rescuing NCF1 expression in macrophages further alleviated renal fibrosis and decreased macrophage infiltration in the UUO kidney. In addition, flow cytometry data showed fewer CD11b+Ly6Chi macrophages in the kidney of the Ncf1m1j.Ncf1Tg-CD68 group than the Ncf1m1j group. Innovation: We first used the Ncf1m1j mice and Ncf1m1j.Ncf1Tg-CD68 mice to detect the role of NCF1 in the pathological process of renal fibrosis induced by obstruction. Also, we found that NCF1 expressed in different cell types exerts opposing effects on obstructive nephropathy. Conclusion: Taken together, our findings support that systemic mutation of Ncf1 ameliorates renal fibrosis induced by obstruction, and rescuing NCF1 in macrophages further alleviates renal fibrosis.

4.
Respir Res ; 24(1): 33, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707853

RESUMO

Pulmonary inflammation involves complex changes of the immune cells, in which macrophages play important roles and their function might be influenced by metabolism. Slc38a6 acts as a carrier of nutrient for macrophages (Mφ) to exert the function. In this study, pneumonia patient blood was found up-regulated SLC38A6 expression, which correlated with monocytes number and white blood cell number. The similar result was also shown in LPS induced sepsis mice. To reveal the key role of Slc38a6, we used systemic and conditional knock-out mice. Either systemic or LyzCRE specific knock-out could alleviate the severity of sepsis mice, reduce the proinflammatory cytokine TNF-α and IL-1ß expression in serum and decrease the monocytes number in bronchial alveolar lavage and peritoneal lavage via flow cytometry. In order to reveal the signal of up-regulated Slc38a6, the Tlr4 signal inhibitor TAK242 and TLR4 knock-out mice were used. By blocking Tlr4 signal in macrophages via TAK242, the expression of Slc38a6 was down-regulated synchronously, and the same results were also found in Tlr4 knock-out macrophages. However, in the overexpressed Slc38a6 macrophages, blocking Tlr4 signal via TAK242, 20% of the mRNA expression of IL-1ß still could be expressed, indicating that up-regulated Slc38a6 participates in IL-1ß expression process. Collectively, it is the first time showed that an amino acid transporter SLC38A6 up-regulated in monocytes/macrophages promotes activation in pulmonary inflammation. SLC38A6 might be a promising target molecule for pulmonary inflammation treatment.


Assuntos
Pneumonia , Receptor 4 Toll-Like , Animais , Camundongos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos Knockout , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Transdução de Sinais/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
5.
J Proteome Res ; 20(10): 4746-4757, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496567

RESUMO

Tandem mass tag (TMT)-coupled liquid chromatography coupled with tandem mass spectrometry is a powerful method to investigate synovial tissue protein profiles in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Protein was isolated from synovial tissue samples of 22 patients and labeled with a TMT kit. Over 500 proteins were identified as the differential expression protein on comparing RA and OA synovial tissue, including 239 upregulated and 271 downregulated proteins. Data are available via ProteomeXchange with identifier PXD027703. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority participated in the developmental processes and protein processing in the endoplasmic reticulum. Olfactomedin 4 (OLFM4), a secreted glycoprotein, in joint inflammation of RA was explored. OLFM4 was upregulated in RA synovial tissue samples. In fibroblast-like synoviocytes (FLS), inflammation cytokines, TNF-α, interleukin (IL)-1ß, and LPS can upregulate OLFM4. After OLFM4 knockdown under TNF-α stimulation, RA FLS proliferation was inhibited and the expression of CXCL9, CXCL11, and MMP-1 was decreased. Overall, the RA synovial tissue protein expression profile by proteomic analysis shows some unique targets in RA pathophysiology, and OLFM4 in FLS plays an important role in RA joint inflammation. OLFM4 can be a promising therapeutic target in RA synovial tissue.


Assuntos
Artrite Reumatoide , Proteômica , Artrite Reumatoide/genética , Proliferação de Células , Células Cultivadas , Fibroblastos , Fator Estimulador de Colônias de Granulócitos , Humanos , Inflamação/genética , Membrana Sinovial
6.
Front Immunol ; 12: 619392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841401

RESUMO

Objectives: Mounting evidence has demonstrated that microRNAs (miRNAs) participate in rheumatoid arthritis (RA). The role of highly conserved miR-15/107 family in RA has not been clarified yet, and hence investigated in this study. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of miRNAs and genes. Cell counting kit 8 (CCK-8) and FACS were used to detect proliferation and apoptosis. Protein expression was detected by using Western blotting. mRNA deep sequencing and cytokine antibody array were used to analyze differentially expressed genes, signaling pathways and cytokines. Results: The expression of miR-15a, miR-103, miR-497, and miR-646 was found decreased, while miR-424 increased in RA patients. MiR-424 and miR-497 were further investigated and the results showed that they could regulate the expression of multiple genes in rheumatoid arthritis synovial fibroblast (RASF) and affect signaling pathways. At the protein level, miR-497 mimic altered all the selected inflammation-related genes while miR-424 inhibitor only affected part of genes. MiR-497 mimic, rather than miR-424 inhibitor, had significant effects on proliferation and apoptosis of RASF. DICER1 was found to positively regulate the expression of miR-424 and miR-497, while DICER1 was also negatively regulated by miR-424. The increase of miR-424 could reduce miR-497 expression, thus forming a loop, which facilitated explaining the dysregulated miR-424 and miR-497 in RA. Conclusion: The miR-424 and miR-497 of miR-15/107 family affect cell proliferation and apoptosis in RA, and the proposed miR-424-DICER1-miR-497 feedback loop provides a novel insight into regulating miRNA expression and a candidate target for controlling RA.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Membrana Sinovial/metabolismo , Apoptose/genética , Artrite Reumatoide/patologia , Biomarcadores , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Matriz Extracelular , Humanos , Transdução de Sinais , Membrana Sinovial/patologia
7.
Eur J Immunol ; 51(8): 2062-2073, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864383

RESUMO

MicroRNA-147 (miR-147) had been previously found induced in synoviocytes by inflammatory stimuli derived from T cells in experimental arthritis. This study was designed to verify whether loss of its function might alleviate inflammatory events in joints of experimental and rheumatoid arthritis (RA). Dark Agouti (DA) rats were injected intradermally with pristane to induce arthritis, and rno-miR-147 antagomir was locally administrated into individual ankle compared with negative control or rno-miR-155-5p antagomir (potential positive control). Arthritis onset, macroscopic severity, and pathological changes were monitored. While in vitro, gain or loss function of hsa-miR-147b-3p/hsa-miR-155-5p and ZNF148 was achieved in human synovial fibroblast cell line SW982 and RA synovial fibroblasts (RASF). The expression of miRNAs and mRNAs was detected by using RT-quantitative PCR, and protein expression was detected by using Western blotting. Anti-miR-147 therapy could alleviate the severity, especially for the synovitis and joint destruction in experimental arthritis. Gain of hsa-miR-147b-3p/hsa-miR-155-5p function in TNF-α stimulated SW982 and RASF cells could upregulate, in contrast, loss of hsa-miR-147b-3p/hsa-miR-155-5p function could downregulate the gene expression of TNF-α, IL-6, MMP3, and MMP13. Hence, such alteration could participate in synovial inflammation and joint destruction. RNAi of ZNF148, a miR-147's target, increased gene expression of TNF-α, IL-6, MMP3, and MMP13 in SW982 and RASF cells. Also, mRNA sequencing data showed that hsa-miR-147b-3p mimic and ZNF148 siRNA commonly regulated the gene expression of CCL3 and DEPTOR as well as some arthritis and inflammation-related pathways. Taken together, miR-147b-3p contributes to synovial inflammation through repressing ZNF148 in RA and experimental arthritis.


Assuntos
Artrite Reumatoide/imunologia , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica/imunologia , MicroRNAs/imunologia , Membrana Sinovial/patologia , Fatores de Transcrição/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Inflamação , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Ratos , Fatores de Transcrição/metabolismo
8.
Mol Immunol ; 134: 118-128, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33770523

RESUMO

Growing research evidence suggests that elevated TLR2 is closely related to the occurrence and development of nonalcoholic steatohepatitis (NASH). However, a little is known about its regulatory mechanism. Here, we found that IFN-γ and TLR2 expression is significantly upregulated in NASH associated rat liver specimens. Meanwhile, IFN-γ positively regulated the expression of TLR2 and its target genes in NR8383 rat macrophage cells in dose- & time-dependent manner. Importantly, IFN-γ also regulated the related transcriptional factors pSTAT1 and IRF1. Moreover, we identified that the DNA fragment from -1000 to -200 bp of the TLR2 promoter region is responsible for STAT1 binding, especially the STAT1-BS3 (-591∼-573 bp). Further investigation verified that STAT1ß is essential in this process, rather than STAT1α. Overall, our findings suggest that IFN-γ promotes TLR2 transcription and its target genes expression by STAT1ß. This leads to the hepatic inflammation vicious cycle in NASH and provides new potential targets for treating NASH.


Assuntos
Inflamação/patologia , Interferon gama/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fator de Transcrição STAT1/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/imunologia , Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Transdução de Sinais/fisiologia , Ativação Transcricional
9.
Arthritis Res Ther ; 22(1): 200, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867828

RESUMO

OBJECTIVE: The disruption of metabolic events and changes to nutrient and oxygen availability due to sustained inflammation in RA increases the demand of bioenergetic and biosynthetic processes within the damaged tissue. The current study aimed to understand the molecular mechanisms of SLC7A5 (amino acid transporter) in synoviocytes of RA patients. METHODS: Synovial tissues were obtained from OA and RA patients. Fibroblast-like synoviocytes (FLS) were isolated, and SLC7A5 expression was examined by using RT-qPCR, immunofluorescence, and Western blotting. RNAi and antibody blocking treatments were used to knockdown SLC7A5 expression or to block its transporter activities. mTOR activity assay and MMP expression levels were monitored in RA FLS under amino acid deprivation or nutrient-rich conditions. RESULTS: RA FLS displayed significantly upregulated expression of SLC7A5 compared to OA FLS. Cytokine IL-1ß was found to play a crucial role in upregulating SLC7A5 expression via the NF-κB pathway. Intervening SLC7A5 expression with RNAi or blocking its function by monoclonal antibody ameliorated MMP3 and MMP13 protein expression. Conversely, upregulation of SLC7A5 or tryptophan supplementation enhanced mTOR-P70S6K signals which promoted the protein translation of MMP3 and MMP13 in RA FLS. CONCLUSION: Activated NF-κB pathway upregulates SLC7A5, which enhances the mTOR-P70S6K activity and MMP3 and MMP13 expression in RA FLS.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/genética , Células Cultivadas , Fibroblastos , Humanos , Mediadores da Inflamação , Transportador 1 de Aminoácidos Neutros Grandes , Proteínas Quinases S6 Ribossômicas 70-kDa , Membrana Sinovial , Serina-Treonina Quinases TOR
10.
Clin Immunol ; 220: 108579, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866644

RESUMO

Endoplasmic reticulum (ER) stress associated proteins contribute to the pathogenesis of rheumatoid arthritis (RA) through affecting synoviocyte proliferation and proinflammatory cytokine production. The role of DERL3, an ER-associated degradation component, in joint inflammation of RA was explored. Synovial tissues from RA and osteoarthritis (OA) patients were collected, and in RA synovial tissue, DERL3 showed up-regulation and significantly positive correlation with the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-1. Immunofluorescence result suggested DERL3 was located in fibroblast-like synoviocytes (FLS). Among different inflammatory stimuli, DERL3 could be up-regulated by TNF-α stimulation in FLS. Under TNF-α stimulation, knocking down DERL3, the expression of IL-6, IL-8, MMP-1, MMP-13 was reduced and the activation of nuclear factor kappa B (NF-κB) signaling pathway was inhibited. In pristane-induced arthritis (PIA) rat model, Derl3 was up-regulated in synovial tissue and disease was attenuated after intraarticular injection of siDerl3. Overall, we conclude that TNF-α inducing DERL3 expression promotes the inflammation of FLS through activation of NF-κB signaling pathway, suggesting DERL3 plays important roles in the pathogenesis of RA and is a promising therapeutic target.


Assuntos
Artrite Reumatoide/imunologia , Proteínas de Membrana/imunologia , Sinoviócitos/imunologia , Idoso , Animais , Artrite Experimental/imunologia , Células Cultivadas , Citocinas/imunologia , Feminino , Humanos , Masculino , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 13 da Matriz/imunologia , Camundongos , Pessoa de Meia-Idade , NF-kappa B/imunologia , Osteoartrite/imunologia , Ratos , Transdução de Sinais
11.
J Immunol ; 205(1): 181-192, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32503893

RESUMO

Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis. We hypothesize that Pkm2, as a key regulatory enzyme of glycolysis pathway, triggers the activation of macrophages (Mφ), which results in proinflammatory cytokine production during the arthritis progress. In this study, Pkm2 was found to be overexpressed in ED1-positive Mφ in spleens and synovial tissues from arthritic rats via immunofluorescence, Western blotting, and quantitative RT-PCR. To reveal the role of Pkm2, Dark Agouti rats were treated with either Pkm2 enzyme inhibitor shikonin or the RNA interference plasmids of Pkm2 and negative control plasmids, respectively, via i.p. injection. Pkm2 intervention could alleviate the severity of pristane-induced arthritis in aspects of the macroscopic arthritis score, perimeter changes of midpaw, and the synovitis and destruction of the bone and cartilage as well as reduce the ED1 and p-Stat1-positive cell population in rat synovial tissues. Silencing Pkm2 by RNA interference in classical activated rat and mouse Mφ resulted in less Tnf-α, Il-1ß production via Stat1 signaling. Collectively, Pkm2 is highly expressed in ED1-positive Mφ of spleens and synovial tissues from arthritic rats and promotes Mφ activation via Stat1 signaling. Pkm2 might be a promising selective metabolic target molecule for rheumatoid arthritis treatment.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Piruvato Quinase/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Artrite Experimental/diagnóstico , Artrite Experimental/patologia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/patologia , Técnicas de Silenciamento de Genes , Humanos , Macrófagos/metabolismo , Camundongos , Naftoquinonas/administração & dosagem , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Ratos , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
12.
J Pharm Anal ; 10(2): 102-108, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32282863

RESUMO

Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence of SARS-CoV-2 has been marked as the third introduction of a highly pathogenic coronavirus into the human population after the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) in the twenty-first century. In this minireview, we provide a brief introduction of the general features of SARS-CoV-2 and discuss current knowledge of molecular immune pathogenesis, diagnosis and treatment of COVID-19 on the base of the present understanding of SARS-CoV and MERS-CoV infections, which may be helpful in offering novel insights and potential therapeutic targets for combating the SARS-CoV-2 infection.

13.
Mediators Inflamm ; 2019: 6768504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275058

RESUMO

Dysregulation of multiple microRNAs widely takes place during rheumatoid arthritis (RA) and experimental arthritides. This study is performed to explore the possible mechanism underlying DICER1 deficiency-mediated inflammation in human synoviocytes SW982. Firstly, RNAi of DICER1 led to increased COX2, MMP3, and MMP13 protein production, while DICER1 overexpression could reduce MMP13 expression. Secondly, the increase of IL-8 and decrease of TGF-ß1 and TIMP1 were determined in the supernatant derived from DICER1 siRNA-treated cells, while DICER1 overexpression was found capable to reverse this effect. Ingenuity pathway analysis (IPA) software predicted that the Dicer1 deficiency-induced dysregulated cytokines in synoviocytes could possibly lead to the inflammatory disorders in the synovial tissue. Moreover, DICER1 deficiency could also reduce apoptosis, while DICER1 overexpression was found to decrease the proliferation and enhance apoptosis. In addition, DICER1 deficiency could lower the expression of multiple RA-related miRNAs such as miR-155. Meanwhile, DICER1 overexpression could rescue their low expression levels. And then, gain or loss of miR-155 function could regulate the protein levels of MMP3 and MMP13. These results indicated that DICER1 might play its role through regulating its downstream RA-related miRNAs. Our data demonstrated that DICER1 deficiency could cause multiple proinflammatory events in human synoviocytes SW982. This mechanism study might provide the possible target molecule to modify the inflammatory destruction and overproliferation in synoviocytes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Inflamação/metabolismo , Ribonuclease III/metabolismo , Sinoviócitos/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Inflamação/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Interferência de RNA , Ribonuclease III/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
14.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29545315

RESUMO

Synoviocytes from rheumatoid arthritis (RA) patients share certain features with tumor cells, such as over proliferation and invasion. Anomalous microRNA (miRNA) expression may participate in the pathogenesis of RA in different ways. The objective of the present study was to observe the role of miR-10a-5p targeting T-box transcription factor 5 (TBX5) gene on synoviocyte proliferation and apoptosis in RA. Human synovial sarcoma cell line, SW982 cells stimulating with interleukin-1ß (IL-1ß) were transfected with miR-10a-5p mimic and siRNA of TBX5. The real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis were used to evaluate the expression level of miR-10a-5p and TBX5 in SW982 cells respectively. Further, the proliferation and apoptosis of SW982 cells after treatment were determined by cell counting kit (CCK-8) and flow cytometry analysis respectively. We found that the miR-10a-5p showed down-regulated while TBX5 showed up-regulated expression in synoviocytes after stimulation with IL-1ß. The miR-10a-5p mimic treatment showed a decline in cell proliferation while the increased rate of cell apoptosis as compared with control. Moreover, knockdown of TBX5 favored the apoptosis and reduced the cell proliferation as compared with control group. We conclude that down-regulation of miR-10a-5p promotes proliferation and restricts apoptosis via targeting TBX5 in inflamed synoviocytes.


Assuntos
Apoptose , Artrite Reumatoide/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Proteínas com Domínio T/biossíntese , Artrite Reumatoide/patologia , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Inflamação/patologia , Sinoviócitos/patologia
15.
J Cell Mol Med ; 22(1): 241-250, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782180

RESUMO

MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR-10a-5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR-10a-5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL-1ß was determined by RT-qPCR and Western blotting. The direct interaction between miR-10a-5p and TBX5 3'UTR was determined by dual-luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR-10a-5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT-qPCR and Western blotting. Down-regulated expression of miR-10a-5p and up-regulation of TBX5 in human patients with RA were found compared to patients with OA. IL-1ß could reduce miR-10a-5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR-10a-5p and 3'UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR-10-5p after transfection with its mimic and inhibitor caused the related depression and re-expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3-TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR-10a-5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.


Assuntos
Regulação para Baixo/genética , Inflamação/genética , Inflamação/patologia , Articulações/patologia , MicroRNAs/genética , Sinoviócitos/metabolismo , Proteínas com Domínio T/metabolismo , Adulto , Idoso , Artrite Reumatoide/patologia , Sequência de Bases , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Membrana Sinovial/patologia , Sinoviócitos/patologia , Proteínas com Domínio T/genética , Regulação para Cima/genética
16.
Clin Immunol ; 175: 56-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940139

RESUMO

Autophagy is involved in both innate and adaptive immune regulation. We propose that autophagy regulates activation of TLR3 in macrophages and is thereby essential for development of pristane-induced arthritis. We found that pristane treatment induced autophagy in macrophages in vitro and in vivo, in spleen cells from pristane injected rats. The induced autophagy was associated with STAT1 phosphorylation and expression of IRF1 and TLR3. Blocking the pristane activated autophagy by Wortmannin and Bafilomycin A1 or by RNAi of Becn1 led to a downregulation of the associated STAT1-IRF1-TLR3 pathway. Most importantly, the development of arthritis was alleviated by suppressing either autophagy or TLR3. We conclude that pristane enhanced autophagy, leading to a STAT1-IRF1 controlled upregulation of TLR3 expression in macrophages, is a pathogenic mechanism in the development of arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Autofagia/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Terpenos/farmacologia , Receptor 3 Toll-Like/metabolismo , Animais , Artrite Experimental/metabolismo , Regulação para Baixo/efeitos dos fármacos , Macrófagos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Clin Immunol ; 156(2): 141-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25533241

RESUMO

Based on pristane-induced arthritis (PIA), we found that T cells mediate TLR3 overexpression in fibroblast-like synoviocytes (FLS). The aim of this study is to determine key factors by which T cells induce TLR3 expression. Rat FLS were co-cultured with pristane primed T cell conditioned medium (PPT medium), and TLR3 expression of FLS was significantly induced. TNF-α, IFN-γ and IL-17 were dominantly expressed in PIA T cells. The overexpression of TLR3 and its related genes in FLS co-cultured with PPT medium could be reduced through blocking TNF-α pathway. CD4(+) T cells from spleen of PIA rats showed increase of TNF-α secretion. P38 MAPK and NF-κB were activated in FLS by PPT medium, and their inhibitors decreased TLR3 upregulation significantly. Finally, TNF-α induced TLR3 expression was confirmed in human synovial cells. Summarily, TNF-α derived from pristane primed T cells induced TLR3 expression of FLS through activating p38 MAPK and NF-κB pathways.


Assuntos
Artrite Experimental/imunologia , NF-kappa B/imunologia , Receptor 3 Toll-Like/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Artrite Experimental/induzido quimicamente , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Imunossupressores/farmacologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-6/biossíntese , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/biossíntese , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Piridinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Sulfonas/farmacologia , Membrana Sinovial/citologia , Terpenos/farmacologia , Receptor 3 Toll-Like/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...