Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172012, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552968

RESUMO

Uncovering the spatiotemporal features of ecosystem services (ESs) and their intricate interrelations in large lake basins can facilitate the development of scientific management measures for various ESs. Previous studies have focused less on watershed units and their historical dynamics, and the ecosystem service (ES) driving mechanisms remain unclear. Here, we focused on Hunan Province-the main coverage area of the Dongting Lake Basin (China's second largest freshwater lake), investigated the spatiotemporal characteristics of seven typical ESs and their interactions, identified the ecosystem service bundle (ESB) historical spatial patterns and revealed the socio-ecological driving mechanisms of these ES changes. Results showed that: (1) the spatial distribution of most ESs remained stable in the basin. Food production (FP), water yield (WY), soil conservation (SC) and net primary productivity (NPP) improved over time, whereas nitrogen retention (NR), habitat quality (HQ) and outdoor recreation (OR) declined; (2) tradeoffs were observed between food production and most ESs, whereas synergistic relationships between all ESs except food production. The tradeoff relationship between food production and water yield increased significantly over time, while the synergistic relationship between water yield and nitrogen retention decreased significantly; (3) five ecosystem service bundles were identified. And the transformation of soil conservation area into integrated ecological regulation area mainly occurred from 2000 to 2020, resulting in an increase in the function of ecological regulation services; (4) natural conditions such as precipitation, topography and vegetation, as well as socio-economic factors such as Gross Domestic Product (GDP) and population, were key factors affecting ESs. The interactions among most of these drivers can further elucidate the ES changes. Our results emphasize the need for a watershed-based assessment and a historical dynamic perspective in the sustainable management of ESs.


Assuntos
Ecossistema , Lagos , Conservação dos Recursos Naturais/métodos , Solo , Nitrogênio , Água , China
2.
Sci Total Environ ; 912: 168866, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016546

RESUMO

The substantial impacts of exogenous pollutants on lake water quality have been extensively reported. Water-sediment factors, which are essential for regulating water quality in river-connected lakes, have not been studied in depth under different hydrological conditions. This study has combined a 31-year water environmental dataset (1991-2021) regarding Dongting Lake and a vector autoregression model (VAR) in order to investigate the impulse response characteristics and contributions of water quality caused by water-sediment factors across different periods. Our analysis suggests that total nitrogen (TN) exhibited a significant increasing trend, whereas total phosphorus (TP) increased to 0.17 mg/L, and then decreased to 0.07 mg/L from 1991 to 2021. The inflow of suspended sediment discharge (SSD) decreased significantly during the study period, mainly because of the decrease in SSD in the three channels (TC). In the pre-Three Gorges Dam (TGD) period, water discharge (WD) and SSD were the Granger causes of TN and TP. In the post-TGD periods this relationship disappeared because of the construction of the TGD, which reduced the inflow of SSD and WD into the lake. Water quality indicators showed an instant response to the shock from themselves with high values, whereas the impulse response of the water quality to water-sediment factors exhibited lagged variations. This meant that the water quality indicators displayed a high impact by themselves across the different periods, with values varying from 67 % to 95 %. Water level (WL) and SSD were the predominant water-sediment factors for TP in the pre-TGD period, with the impact on TP changes accounting for 11 % and 9 %, respectively, whereas the contribution of SSD decreased to 2 % in the post-TGD period. WL was the most crucial water-sediment factor for CODMn during the different periods, with contributions varying from 17 % to 20 %. To improve the water quality of Dongting Lake, in addition to the implementation of strict controls on excessive external nutrient loading, regulating water-sediment factors according to the hydrological features of Dongting Lake during different periods is vital.

3.
Environ Sci Pollut Res Int ; 29(10): 14083-14097, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601677

RESUMO

The hydrological conditions of river-connected lakes are complex primarily owing to their considerable water-level fluctuations (WLFs). Water quality in such lakes varies with hydrodynamic variations; however, their relationship is not clear. To identify the unique relationship between water level and water quality in river-connected lakes, we used the comprehensive pollution index (CPI) and regression analysis to analyze the spatiotemporal variation in water quality in Dongting Lake from 2015 to 2018 and the effects of water level on water quality. Four water quality parameters were selected: total nitrogen (TN), total phosphorus (TP), permanganate index (CODMn), and chlorophyll a (Chl-a). The results showed significant spatial variation in the lake water quality, with relatively high concentrations of TN, TP, CODMn, and Chl-a in East Dongting Lake. TN and TP decreased by 12.15% and 37.61%, respectively, from 2015 to 2018, whereas CODMn increased from 1.781 to 2.009 mg/L. Seasonally, TN and TP concentrations were low in the summer and autumn, with high concentrations in the winter and spring. In contrast, CODMn and Chl-a concentrations exhibited opposite trends. The pollution level in Dongting Lake ranged between slightly and moderately polluted, with a CPI ranging from 0.76 to 1.32 across all sampling sites during 2015-2018. The water level in Dongting Lake initially increased and, then, decreased in a year, with marked WLFs owing to seasonal shifts in precipitation and human activities. The water level had significant negative relationships with TN and TP concentrations and a significant positive relationship with CODMn concentration (p < 0.05). Based on the results, strict control of excessive external nutrient loading should be actively implemented in Dongting Lake, in addition to hydrological regulation for effective lake water quality management.


Assuntos
Lagos , Poluentes Químicos da Água , China , Clorofila A , Monitoramento Ambiental , Eutrofização , Humanos , Nitrogênio/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Environ Pollut ; 290: 118115, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523533

RESUMO

Water quality is essential for lake systems, which are not only influenced by climate change and human activities but are also controlled by high-frequency hydrological rhythms. However, the differences in water quality during different hydrological periods have not been addressed in detail. Here, a 15-year water quality dataset (2004-2018) was selected to explore the variation trends and their relationship with water level in different hydrological periods in Dongting Lake, a typical river-connected lake in China. The hydrological periods were classified into hydrological years and hydrological phases based on the characteristics of water level fluctuations. The results showed that annual variation in the water level in Dongting Lake fluctuated between 23.63 and 25.81 m from 2004 to 2018, and also displayed considerable water level differences ranging from 7.66 m (dry years) to 9.97 m (wet years) within a year. The water level of the lake phase showed significant differences among the different hydrological years. The concentration of TP, CODMn, and NH3-N showed significant decreasing trends, whereas that of TN showed a significant increasing trend from 2004 to 2018. The TN concentration in wet years was significantly higher than that in dry years, which could be attributed to sewage discharge and hydrological conditions. The contributions of the lake phase to the total sewage discharge successively decreased from 64.54% in wet years to 59.47% in dry years, while the river phase showed the opposite trends, ranging from 35.46% to 40.53%, reflecting the strong relationship between water regimes and pollutant fluxes. A regression analysis indicated the different responses of water quality to water level fluctuations over hydrological years, and water quality in different hydrological phases clearly separated the lake and river phases, highlighting the influence of water level fluctuations on water quality within a year. To maintain the water quality of Dongting Lake, the control of external load should not be relaxed, and hydrological regulation should be actively carried out within each year.


Assuntos
Lagos , Rios , Qualidade da Água , China , Clima , Monitoramento Ambiental , Hidrologia
5.
Environ Pollut ; 268(Pt A): 115761, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035913

RESUMO

Lake water pollution has caused many serious ecological issues globally. An emerging public concern over water quality deterioration in lakes has heightened the need to evaluate the water quality of lakes at long-term scales, particularly for those with high hydrological alterations. This study combines the Mann-Kendall (M-K) test and self-organising map (SOM) to characterise and evaluate water quality trends in Dongting Lake, China, from 1991 to 2018, before and after the inauguration of the Three Gorges Dam (TGD). Herein, six water quality parameters were selected, namely pH, permanganate index (CODMn), ammonia nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP), and the five-day biochemical oxygen demand (BOD5). Our results show that the concentrations of TN and BOD5 increase significantly throughout the study period (|Z| ≥ 1.96). The number of abrupt change points for the six water quality parameters in the post-TGD period was greater than that in the pre-TGD period, which indicates an increased risk of water deterioration in the post-TGD period. The SOM results show that the pH values ranged from 7.64 to 7.85 among the four clusters; besides, the concentrations of the remaining water quality parameters from 1991 to 1997 and 2000 to 2003 were relatively lower, suggesting that the water quality in the pre-TGD period was better. The classification of TN and TP ranged from Level Ⅳ-Ⅴ among the clusters, which did not satisfy the level Ⅲ standard for potable water, thereby posing a higher ecological risk to the Dongting Lake. These results indicate the deterioration of the water quality in Dongting Lake during the post-TGD period under the influences of pollution load and hydrological regulation. Therefore, strict controls on the external nutrient loading and hydrological regulations should be considered for water quality management.


Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Rios , Água , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Wei Sheng Wu Xue Bao ; 56(7): 1159-67, 2016 Jul 04.
Artigo em Chinês | MEDLINE | ID: mdl-29733177

RESUMO

Objective: Biopesticides are safe and environment friendly. We evaluated the biocontrol effect of Pythium oligandrum broth (POB) and its toxicity to animals and plant growth. Methods: Animal, antagonist, pot, and field experiments with mice, Mycosphaerella melonis, and cucumber seedlings were carried out to study animal toxicity, control of gummy stem blight, plant growth, fruit yield and quality with POB produced from self-isolated P. oligandrum CQ2010. Results: Mouse showed normal weight, appearances, performances and no pathogenic changes in organs and tissues with a large amount of POB supplied by lavage. The inhibition rate of POB against M. melonis was 51.95%, similar to thiophanate methy (800 times dilution) but much higher than chlorothalonil (200 times dilution). Malondialdehyde concentration was reduced whereas activities of peroxidase and superoxide dismutase were stimulated in seedling leaves irrespective of POB supplied before and after pathogenic inoculation. POB also decreased the pathogenic incidence and disease index with relative control efficacy from 54.8% to 64.1%. Thus, POB could alleviate cell membrane damage caused by pathogenic microbes, stimulate physiological reactions related to disease defense, and increase disease-resistant abilities of plants. Moreover, POB increased chlorophyll content, root activity, and uptake of nitrogen, phosphorus and potassium, resulting in growth acceleration, fruit yield increment, and quality improvement. Conclusion: POB is safe to animals and could control gummy stem blight of cucumber seedlings, promote plant growth, increase fruit yield, and improve the qualities.


Assuntos
Ascomicetos/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Cucumis sativus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Pythium/química , Animais , Ascomicetos/crescimento & desenvolvimento , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/microbiologia , Camundongos , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...