Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421121

RESUMO

Herein, a scalable electrodeposition strategy is proposed to achieve hierarchical CuO/nickel-cobalt-sulfide (NCS) electrodes using two-step potentiostatic deposition followed by high-temperature calcination. The introduction of CuO provides support for the further deposition of NSC to ensure a high load of active electrode materials, thus generating more abundant active electrochemical sites. Meanwhile, dense deposited NSC nanosheets are connected to each other to form many chambers. Such a hierarchical electrode prompts a smooth and orderly transmission channel for electron transport, and reserves space for possible volume expansion during the electrochemical test process. As a result, the CuO/NCS electrode exhibits superior specific capacitance (Cs) of 4.26 F cm-2 at 20 mA cm-2 and remarkable coulombic efficiency of 96.37%. Furthermore, the cycle stability of the CuO/NCS electrode remains at 83.05% within 5000 cycles. The multistep electrodeposition strategy provides a basis and reference for the rational design of hierarchical electrodes to be applied in the field of energy storage.

2.
Micromachines (Basel) ; 14(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36677186

RESUMO

Herein, nickel-cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm-2 at 2 mA cm-2 and sustain 5.74 F cm-2 at 40 mA cm-2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm-2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.

3.
Micromachines (Basel) ; 13(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35208361

RESUMO

A Cu(OH)2/Ni3S2 composite has been designed and in situ constructed on Cu foam substrate by facile two-step electrodeposition. Cu(OH)2 is achieved on Cu foam by galvanostatic electrodeposition, and the subsequent coating of Ni3S2 is realized by cyclic voltammetric (CV) electrodeposition. The introduction of Cu(OH)2 provides skeleton support and a large specific surface area for the Ni3S2 electrodeposition. Benefiting from the selection of different components and preparation technology, the Cu(OH)2/Ni3S2 composite exhibits enhanced electrochemical properties with a high specific capacitance of 4.85 F cm-2 at 2 mA cm-2 and long-term cyclic stability at 80.84% (4000 cycles).

4.
Micromachines (Basel) ; 12(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357239

RESUMO

The ZnO/Ni2S3 composite has been designed and in situ synthesized on Ni foam substrate by two steps of electrodeposition. ZnO was achieved on Ni foam by a traditional potentiostatic deposition, followed by cyclic voltammetric (CV) electrodeposition, to generate Ni2S3, where the introduction of ZnO provides abundant active sites for the subsequent Ni2S3 electrodeposition. The amount of deposit during CV electrodeposition can be adjusted by setting the number of sweep segment and scan rate, and the electrochemical characteristics of the products can be readily optimized. The synergistic effect between the ZnO as backbones and the deposited Ni2S3 as the shell enhances the electrochemical properties of the sample significantly, including a highly specific capacitance of 2.19 F cm-2 at 2 mA cm-2, good coulombic efficiency of 98%, and long-term cyclic stability at 82.35% (4000 cycles).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...