Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 15(1): 311-337, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307824

RESUMO

Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor ß (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Fator de Maturação da Glia/genética , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Lisina
2.
Adv Sci (Weinh) ; 10(30): e2303224, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661576

RESUMO

Phosphorylation of Ser10 of histone H3 (H3S10p), together with the adjacent methylation of Lys9 (H3K9me), has been proposed to function as a 'phospho-methyl switch' to regulate mitotic chromatin architecture. Despite of immense understanding of the roles of H3S10 phosphorylation, how H3K9me2 are dynamically regulated during mitosis is poorly understood. Here, it is identified that Plk1 kinase phosphorylates the H3K9me1/2 methyltransferase G9a/EHMT2 at Thr1045 (pT1045) during early mitosis, which attenuates its catalytic activity toward H3K9me2. Cells bearing Thr1045 phosphomimic mutant of G9a (T1045E) show decreased H3K9me2 levels, increased chromatin accessibility, and delayed mitotic progression. By contrast, dephosphorylation of pT1045 during late mitosis by the protein phosphatase PPP2CB reactivates G9a activity and upregulates H3K9me2 levels, correlated with decreased levels of H3S10p. Therefore, the results provide a mechanistic explanation of the essential of a 'phospho-methyl switch' and highlight the importance of Plk1 and PPP2CB-mediated dynamic regulation of G9a activity in chromatin organization and mitotic progression.


Assuntos
Cromatina , Histona-Lisina N-Metiltransferase , Fosforilação , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Metilação
3.
Invest Ophthalmol Vis Sci ; 63(10): 7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094642

RESUMO

Purpose: Age-related macular degeneration (AMD) is currently the leading cause of blindness worldwide. Previously, we identified ubiquitin-protein ligase E3D (UBE3D) as an AMD-associated protein for East Asian populations, and here we further demonstrate that UBE3D could be associated with DNA damage response. Methods: The established I-SceI-inducible GFP reporter system was used to explore the effect of UBE3D on homologous recombination. Immunoprecipitation-mass spectrometry (MS) was used to explore potential UBE3D-interacting proteins and validated with coimmunoprecipitation assays and the pulldown assays. Micrococcal nuclease (MNase) assays were used to investigate the function of UBE3D on heterochromatin de-condensation upon DNA damage. An aged mouse model of blue light-induced eye damage was constructed, and electroretinography (ERG) and optical coherence tomography (OCT) were performed to compare the differences between wild-type and UBE3D+/- mice. Results: First, we show that GFP-UBE3D is recruited to damage sites by PCNA, through a PCNA-interacting protein (PIP) box. Furthermore, UBE3D interacts with KAP1 via R377R378 and oxidation of the AMD-associated V379M mutation abolishes KAP1-UBE3D binding. By MNase assays, UBE3D depletion reduces the chromatin relaxation levels upon DNA damage. In addition, UBE3D depletion renders less KAP1 recruitment. Compared with wild type, blue light induces less damage in UBE3D+/- mice as measured by ERG and OCT, consistent with our biochemical results. Conclusions: Hence, we propose that one potential mechanism that UBE3D-V379M contributes to AMD pathogenesis might be via defective DNA damage repair linked with oxidative stress and our results offered a potential direction for the treatment of AMD.


Assuntos
Degeneração Macular , Animais , Camundongos , Dano ao DNA , Eletrorretinografia , Luz , Degeneração Macular/genética , Antígeno Nuclear de Célula em Proliferação/genética
4.
Elife ; 112022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686730

RESUMO

Transient receptor potential vanilloid 2 (TRPV2) is a multimodal ion channel implicated in diverse physiopathological processes. Its important involvement in immune responses has been suggested such as in the macrophages' phagocytosis process. However, the endogenous signaling cascades controlling the gating of TRPV2 remain to be understood. Here, we report that enhancing tyrosine phosphorylation remarkably alters the chemical and thermal sensitivities of TRPV2 endogenously expressed in rat bone marrow-derived macrophages and dorsal root ganglia (DRG) neurons. We identify that the protein tyrosine kinase JAK1 mediates TRPV2 phosphorylation at the molecular sites Tyr(335), Tyr(471), and Tyr(525). JAK1 phosphorylation is required for maintaining TRPV2 activity and the phagocytic ability of macrophages. We further show that TRPV2 phosphorylation is dynamically balanced by protein tyrosine phosphatase non-receptor type 1 (PTPN1). PTPN1 inhibition increases TRPV2 phosphorylation, further reducing the activation temperature threshold. Our data thus unveil an intrinsic mechanism where the phosphorylation/dephosphorylation dynamic balance sets the basal chemical and thermal sensitivity of TRPV2. Targeting this pathway will aid therapeutic interventions in physiopathological contexts.


All the cells in our body have a membrane that separates their interior from the outside environment. However, studded across this barrier are numerous ion channels which allow the cell to sense and react to changes in its surroundings. This includes the ion channel TRPV2, which opens in response to mechanical pressure, certain chemical signals, or rising temperature levels. Many types of cell express TRPV2, including cells in the nervous system, muscle, and the immune system. However, despite being extensively studied, it is still not clear how TRPV2 opens and closes upon encountering high temperatures. In particular, previous work suggested that TRPV2 only responds when a cell's surroundings reach around 52°C, which is a much higher temperature than cells inside our body normally encounter, even during a fever. To help resolve this mystery, Mo, Pang et al. studied TRPV2 in neurons responsible for sending sensory information and in immune cells called macrophages which had been extracted from rodents and grown in the laboratory. They found that when the cells were bathed in solutions containing magnesium ions, their TRPV2 channels were more sensitive to a number of different cues, including temperature. Further biochemical experiments showed that magnesium ions do not directly affect TRPV2, but increase the activity of another protein called JAK1. The magnesium ions caused JAK1 to attach specialized structures called phosphorylation tags to TRPV2. This modification (known as phosphorylation) made the channel more sensitive, allowing it to open in response to temperatures as low as 40°C. Mo, Pang et al. found that inhibiting JAK1 reduced the activity of TRPV2. Conversely, inhibiting the enzyme that removes the phosphorylation tags, called PTPN1, increased the channel's activity. They also discovered that when JAK1 was blocked, macrophages were less able to 'eat up' bacteria, which is one of their main roles in the immune system. Taken together these experiments advance our understanding of how TRPV2 becomes active. The balance between the phosphorylation by JAK1 and the dephosphorylation by PTPN1 controls the temperature at which TRPV2 opens. Since TRPV2 contributes to several biological functions, including the development of the nervous system, the maintenance of heart muscles, and inflammation, these findings will be important to scientists in a broad range of fields.


Assuntos
Gânglios Espinais , Canais de Cátion TRPV , Animais , Gânglios Espinais/metabolismo , Fagocitose , Fosforilação , Ratos , Canais de Cátion TRPV/metabolismo , Tirosina/metabolismo
5.
Cell Cycle ; 18(20): 2651-2659, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31416392

RESUMO

Checkpoint kinase 2 (Chk2) is a pivotal effector kinase in the DNA damage response, with an emerging role in mitotic chromosome segregation. In this study, we show that Chk2 interacts with myosin phosphatase targeting subunit 1 (MYPT1), the targeting subunit of protein phosphatase 1cß (PP1cß). Previous studies have shown that MYPT1 is phosphorylated by CDK1 at S473 during mitosis, and subsequently docks to the polo-binding domain of PLK1 and dephosphorylates PLK1. Herein we present data that Chk2 phosphorylates MYPT1 at S507 in vitro and in vivo, which antagonizes pS473. Chk2 inhibition results in failure of γ-tubulin recruitment to the centrosomes, phenocopying Plk1 inhibition defects. These aberrancies were also observed in the MYPT1-S507A stable transfectants, suggesting that Chk2 exerts its effect on centrosomes via MYPT1. Collectively, we have identified a Chk2-MYPT1-PLK1 axis in regulating centrosome maturation. Abbreviations: Chk2: checkpoint kinase 2; MYPT1: myosin phosphatase targeting subunit 1; PP1cß: protein phosphatase 1c ß; Noc: nocodazole; IP: immunoprecipitation; IB: immunoblotting; LC-MS/MS: liquid chromatography-tandem mass spectrometry; Chk2: checkpoint kinase 2; KD: kinase domain; WT: wild type; Ub: ubiquitin; DAPI: 4',6-diamidino-2-phenylindole; IF: Immunofluorescence; IR: ionizing radiation; siCHK2: siRNA targeting CHK2.


Assuntos
Centrossomo/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Mitose/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Células HEK293 , Células HeLa , Humanos , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosforilação/genética , Plasmídeos/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transfecção , Tubulina (Proteína)/metabolismo , Quinase 1 Polo-Like
6.
Cell Cycle ; 17(4): 421-427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29262732

RESUMO

Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1ß (PP1cß) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cß interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.


Assuntos
Proteína Quinase CDC2/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Quinase CDC2/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitose , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosfopeptídeos/análise , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Serina/metabolismo , Quinase 1 Polo-Like
8.
J Biol Chem ; 292(48): 19548-19555, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021254

RESUMO

Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O-linked ß-N-acetylglucosamine (O-GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O-GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an siOGT-based approach. Lastly, expression of plasmids resistant to siOGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Citocinese , Filamentos Intermediários/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Células HEK293 , Células HeLa , Humanos , N-Acetilglucosaminiltransferases/química , Fosforilação , Serina/metabolismo , Vimentina/metabolismo
9.
Cell Cycle ; 16(20): 1933-1942, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820331

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the folate cycle and its genetic variations have been associated with various human diseases. Previously we identified that MTHFR is phosphorylated by cyclin-dependent kinase 1 (CDK1) at T34 and MTHFR underlies heterochromatin maintenance marked by H3K9me3 levels. Herein we demonstrate that pT34 creates a binding motif that docks MTHFR to the polo-binding domain (PBD) of polo-like kinase 1 (PLK1), a fundamental kinase that orchestrates many cell cycle events. We show that PLK1 phosphorylates MTHFR at T549 in vitro and in vivo. Further, we uncovered a role of MTHFR in replication. First, MTHFR depletion increased the fraction of cells in S phase. This defect could not be rescued by siRNA resistant plasmids harboring T549A, but could be restored by overproduction of Suv4-20H2, the H4K20 methyltransferase. Moreover, siMTHFR attenuated H4K20me3 levels, which could be rescued by Suv4-20H2 overproduction. More importantly, we also investigated MTHFR-E429A, the protein product of an MTHFR single nucleotide variant. MTHFR-E429A overexpression also increased S phase cells and decreased H4K20me3 levels, and it is linked to a poor glioma prognosis in the Chinese population. Collectively, we have unveiled a vital role of PLK1-dependent phosphorylation of MTHFR in replication via histone methylation, and implicate folate metabolism with glioma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Histonas/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Povo Asiático , Proteínas de Ciclo Celular/química , Etnicidade , Glioma/patologia , Células HeLa , Humanos , Metilação , Proteínas Mutantes/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Fase S , Análise de Sobrevida , Quinase 1 Polo-Like
10.
J Biol Chem ; 291(23): 12136-44, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27080259

RESUMO

The anaphase promoting complex/cyclosome (APC/C) orchestrates various aspects of the eukaryotic cell cycle. One of its co-activators, Cdh1, is subject to myriad post-translational modifications, such as phosphorylation and ubiquitination. Herein we identify the O-linked N-acetylglucosamine (O-GlcNAc) modification that occurs on Cdh1. Cdh1 is O-GlcNAcylated in cultured cells and mouse brain extracts. Mass spectrometry identifies an O-GlcNAcylated peptide that neighbors a known phosphorylation site. Cell synchronization and mutation studies reveal that O-GlcNAcylation of Cdh1 may antagonize its phosphorylation. Our results thus reveal a pivotal role of O-GlcNAcylation in regulating APC/C activity.


Assuntos
Acetilglucosamina/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Processamento de Proteína Pós-Traducional , Acilação , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Sítios de Ligação/genética , Proteínas Cdh1/genética , Glicosilação , Células HeLa , Humanos , Immunoblotting , Camundongos , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Ligação Proteica , Espectrometria de Massas em Tandem
11.
Sci Rep ; 5: 8360, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666058

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder caused by ATTCT expansion in the ATXN10 gene. Previous investigations have identified that depletion of Ataxin-10, the gene product, leads to cellular apoptosis and cytokinesis failure. Herein we identify the mitotic kinase Aurora B as an Ataxin-10 interacting partner. Aurora B interacts with and phosphorylates Ataxin-10 at S12, as evidenced by in vitro kinase and mass spectrometry analysis. Both endogenous and S12-phosphorylated Ataxin-10 localizes to the midbody during cytokinesis, and cytokinetic defects induced by inhibition of ATXN10 expression is not rescued by the S12A mutant. Inhibition of Aurora B or expression of the S12A mutant renders reduced interaction between Ataxin-10 and polo-like kinase 1 (Plk1), a kinase previously identified to regulate Ataxin-10 in cytokinesis. Taken together, we propose a model that Aurora B phosphorylates Ataxin-10 at S12 to promote the interaction between Ataxin-10 and Plk1 in cytokinesis. These findings identify an Aurora B-dependent mechanism that implicates Ataxin-10 in cytokinesis.


Assuntos
Ataxina-10/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Substituição de Aminoácidos , Ataxina-10/genética , Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...