Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Agric Food Chem ; 72(20): 11577-11586, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721818

RESUMO

Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Engenharia Metabólica , Monoéster Fosfórico Hidrolases , Plasmídeos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Técnicas de Inativação de Genes
2.
Artigo em Inglês | MEDLINE | ID: mdl-38652228

RESUMO

Although fengycin exhibits broad-spectrum antifungal properties, its application is hindered due to its low biosynthesis level and the co-existence of iturin A and surfactin in Bacillus amyloliquefaciens HM618, a probiotic strain. In this study, transcriptome analysis and gene editing were used to explore the potential mechanisms regulating fengycin production in B. amyloliquefaciens. The fengycin level of B. amyloliquefacien HM-3 (∆itu-ΔsrfAA) was 88.41 mg/L after simultaneously inhibiting the biosyntheses of iturin A and surfactin. The knockout of gene eps associated with biofilm formation significantly increased the fengycin level of the strain HM618, whereas the fengycin level decreased 32.05% after knocking out sinI, a regulator of biofilm formation. Transcriptome analysis revealed that the differentially expressed genes, involved in pathways of amino acid and fatty acid syntheses, were significantly down-regulated in the recombinant strains, which is likely associated with a decrease of fengycin production. The knockout of gene comQXPA and subsequent transcriptome analysis revealed that the ComQXPA quorum sensing system played a positive regulatory role in fengycin production. Through targeted genetic modifications and fermentation optimization, the fengycin production of the engineered strain HM-12 (∆itu-ΔsrfAA-ΔyvbJ) in a 5-L fermenter reached 1.172 g/L, a 12.26-fold increase compared to the fengycin level in the strain HM-3 (∆itu-ΔsrfAA) in the Erlenmeyer flask. Taken together, these results reveal the underlying metabolic mechanisms associated with fengycin synthesis and provide a potential strategy for improving fengycin production in B. amyloliquefaciens.

3.
J Nat Prod ; 87(1): 28-37, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38204395

RESUMO

Fengycin has great potential for applications in biological control because of its biosafety and degradability. In this study, the addition of exogenous precursors increased fengycin production by Bacillus subtilis. Corynebacterium glutamicum was engineered to produce high levels of precursors (Thr, Pro, Val, and Ile) to promote the biosynthesis of fengycin. Furthermore, recombinant C. glutamicum and Yarrowia lipolytica providing amino acid and fatty acid precursors were co-cultured to improve fengycin production by B. subtilis in a three-strain artificial consortium, in which fengycin production was 2100 mg·L-1. In addition, fengycin production by the consortium in a 5 L bioreactor reached 3290 mg·L-1. Fengycin had a significant antifungal effect on Rhizoctonia solani, which illustrates its potential as a food preservative. Taken together, this work provides a new strategy for improving fengycin production by a microbial consortium and metabolic engineering.


Assuntos
Bacillus subtilis , Consórcios Microbianos , Bacillus subtilis/química , Lipopeptídeos/química , Antifúngicos/química
4.
BMC Pulm Med ; 23(1): 336, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689634

RESUMO

BACKGROUND: Endobronchial ultrasonography-guided transbronchial needle aspiration biopsy (EBUS-TBNA) has been used for more than 10 years in China. Its clinical application and diagnostic value in different diseases with large sample was lack of report. METHODS: A retrospective analysis was performed about the application and diagnostic value of EBUS-TBNA in different disease of patients in Respiratory Intervention Center of Guangzhou Institute of Respiratory Health from January 2012 to July 2020. RESULTS: A total 5758 patients were included with 182 patients excluded for lack of information. Finally, data of 5576 patients (3798 males and 1778 females) were analyzed. For anesthetize, most patients were undergoing general anesthesia of intravenous with spontaneous breathing (69.4%), followed by general anesthesia of intravenous and inhalation with tracheal intubation and mechanical ventilation (17.9%) and conscious sedation and analgesia (12.8%). Lymph nodes were the main sites of biopsy obtained (76.4%). Tumors accounted for the highest proportion of disease (66.4%), followed by infection diseases (9.9%), sarcoidosis (3.9%), lymphoma (1.1%), and others (18.7%). The sensitivity of EBUS-TBNA for diagnosis of tumor was 89.7%, and 40.8% for infection diseases. There were significant differences in the puncture site and proportions of diseases between male and females (both p < 0.05). Higher diagnostic value was found in male patients (p < 0.05). CONCLUSION: EBUS-TBNA has good diagnostic value for different mediastinal and central pulmonary space-occupying lesions diseases, with highest sensitivity for tumors. Higher diagnostic value was found in male patients.


Assuntos
Analgesia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Administração Intravenosa , Anestesia Geral , Biópsia por Agulha
5.
Emerg Microbes Infect ; 12(2): 2249120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37584551

RESUMO

ABSTRACTZoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable. Identifying the cellular proteins that restrict viral infection is imperative for developing effective interventions and therapeutics. We utilized a large-scale human cDNA screening and identified transmembrane protein 53 (TMEM53) as a novel cell-intrinsic SADS-CoV restriction factor. The inhibitory effect of TMEM53 on SADS-CoV infection was found to be independent of canonical type I interferon responses. Instead, TMEM53 interacts with non-structural protein 12 (NSP12) and disrupts viral RNA-dependent RNA polymerase (RdRp) complex assembly by interrupting NSP8-NSP12 interaction, thus suppressing viral RdRp activity and RNA synthesis. Deleting the transmembrane domain of TMEM53 resulted in the abrogation of TMEM53-NSP12 interaction and TMEM53 antiviral activity. Importantly, TMEM53 exhibited broad antiviral activity against multiple HKU2-related CoVs. Our findings reveal a novel role of TMEM53 in SADS-CoV restriction and pave the way to host-directed therapeutics against HKU2-related CoV infection.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Proteínas de Membrana , Animais , Humanos , Alphacoronavirus/genética , Antivirais/farmacologia , RNA Polimerase Dependente de RNA/genética , Suínos , Proteínas de Membrana/genética
6.
Bioresour Technol ; 383: 129229, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244302

RESUMO

Fengycin possesses antifungal activity but has limited application due to its low yields. Amino acid precursors play a crucial role in fengycin synthesis. Herein, the overexpression of alanine, isoleucine, and threonine transporter-related genes in Bacillus subtilis increased fengycin production by 34.06%, 46.66%, and 7.83%, respectively. Particularly, fengycin production in B. subtilis reached 871.86 mg/L with the addition of 8.0 g/L exogenous proline after enhancing the expression of the proline transport-related gene opuE. To overcome the metabolic burden caused by excessive enhancement of gene expression for supplying precursors, B. subtilis and Corynebacterium glutamicum which produced proline, were co-cultured, which further improved fengycin production. Fengycin production in the co-culture of B. subtilis and C. glutamicum in shake flasks reached 1554.74 mg/L after optimizing the inoculation time and ratio. The fengycin level in the fed-batch co-culture was 2309.96 mg/L in a 5.0-L bioreactor. These findings provide a new strategy for improving fengycin production.


Assuntos
Bacillus subtilis , Corynebacterium glutamicum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Corynebacterium glutamicum/metabolismo , Técnicas de Cocultura , Prolina/metabolismo , Engenharia Metabólica
7.
J Gynecol Oncol ; 34(5): e59, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37055163

RESUMO

OBJECTIVE: As a gate-keeper enzyme link, pyruvate dehydrogenase E1 subunit alpha (PDHA1) functions as a key regulator during glycolysis and the mitochondrial citric acid cycle, which has been reported in several tumors. Nevertheless, the effects of PDHA1 on biological behaviors and metabolism remain unclear in cervical cancer (CC) cells. The study aims to explore the PDHA1 effects on glucose metabolism in CC cells and its possible mechanism. METHODS: We first determined the expression levels of PDHA1 and activating protein 2 alpha (AP2α) as a PDHA1 potential transcription factor. The effects of PDHA1 in vivo were evaluated through a subcutaneous xenograft mouse model. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) labeling assay, Transwell invasion assay, wound healing assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry were performed in CC cells. Oxygen consumption rate (OCR) levels were determined to reflect aerobic glycolysis level in gastric cancer cells. Reactive oxygen species (ROS) level was measured with 2', 7'-dichlorofluorescein diacetate kit. The relationship between PDHA1 and AP2α was examined by conducting chromatin immunoprecipitation assay and electrophoretic mobility shift assay. RESULTS: In CC tissues and cell lines, PDHA1 was downregulated, while AP2α was upregulated. Overexpression of PDHA1 remarkedly inhibited the proliferation, invasion and migration of CC cells, and tumor growth in vivo, as well as promoted OCR, apoptosis and ROS production. Moreover, AP2α directly bound to PDHA1 within suppressor of cytokine signaling 3 promoter region to negatively regulate PDHA1 expression level. What is more, PDHA1 knockdown could effectively reversed the AP2α silencing-mediated suppressive effects on cell proliferation, invasion, migration, and the promotive effects of AP2α knockdown on OCR, apoptosis and ROS production. CONCLUSIONS: Our findings demonstrate that AP2α negatively regulated PDHA1 via binding to PDHA1 gene promoter to promote malignant CC cell behaviors, which may provide a potential approach for CC therapeutics.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Neoplasias do Colo do Útero/genética , Ciclo do Ácido Cítrico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Glicólise , Regulação Neoplásica da Expressão Gênica
8.
mBio ; 14(2): e0328522, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786573

RESUMO

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Pangolins , SARS-CoV-2 , Zoonoses , Interferons , Filogenia
9.
Cell Signal ; 105: 110609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702290

RESUMO

Ferroptosis is a novel type of iron-dependent regulatory cell death. To date, the regulatory mechanism of ferroptosis in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, we found that the prolyl 4-hydroxylase (P4H) subunit P4HA1 protects NPC cells from erastin-induced ferroptosis by activating HMGCS1, a key enzyme in the mevalonate pathway. We also found that the P4HA1/HMGCS1 axis promoted NPC cell proliferation in vitro. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the growth of NPC cell xenografts and enhanced the inhibitory effect of erastin on tumor growth. Extracellular matrix (ECM) detachment is an important trigger for ferroptosis. We found that the P4HA1/HMGCS1 axis promoted the ferroptosis resistance and survival of ECM-detached NPC cells. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the lung colonization of NPC cells and enhanced the inhibitory effect of erastin on NPC lung metastasis. Moreover, the high expression of P4HA1 predicted a poor prognosis and served as a potential independent prognostic factor in patients with NPC. In conclusion, P4HA1 is a novel molecular marker of NPC ferroptosis resistance and a poor prognosis, and the P4HA1/HMGCS1 axis provides a new target for the treatment of NPC progression.


Assuntos
Ferroptose , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Regulação para Baixo , Morte Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Pró-Colágeno-Prolina Dioxigenase , Hidroximetilglutaril-CoA Sintase
10.
Chemosphere ; 310: 136864, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243085

RESUMO

Bioconversion is an important method for transforming food waste (FW) into high value-added products, rendering it harmless, and recycling resources. An artificial microbial consortium (AMC) was constructed to produce FW-based lipopeptides in order to investigate the strategy of FW bioconversion into value-added products. Exogenous fatty acids as a precursor significantly improved the lipopeptide production of Bacillus amyloliquefaciens HM618. To enhance fatty acid synthesis and efflux in AMC, the recombinant Yarrowia lipolytica YL21 (strain YL21) was constructed by screening 12 target genes related to fatty acids to replace exogenous fatty acids in order to improve lipopeptide production. The levels of fengycin, surfactin, and iturin A in the AMC of strains HM618 and YL21 reached 76.19, 192.80, and 31.32 mg L-1, increasing 7.24-, 12.13-, and 3.23-fold compared to the results from the pure culture of strain HM618 in flask with Landy medium, respectively. Furthermore, free fatty acids were almost undetectable in the co-culture of strains HM618 and YL21, although its level was around 1.25 g L-1 in the pure culture of strain YL21 with Landy medium. Interestingly, 470.24 mg L-1 of lipopeptides and 18.11 g L-1 of fatty acids were co-produced in this AMC in a bioreactor with FW medium. To our knowledge, it is the first report of FW biotransformation into co-produce of lipopeptides and fatty acids in the AMC of B. amyloliquefaciens and Y. lipolytica. These results provide new insights into the biotransformation potential of FW for value-added co-products by AMC.


Assuntos
Bacillus amyloliquefaciens , Microbiota , Eliminação de Resíduos , Yarrowia , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácidos Graxos/metabolismo , Alimentos , Lipopeptídeos
11.
Eur J Med Chem ; 245(Pt 1): 114891, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36343412

RESUMO

Unique coumarin aminophosphonates as new antibacterial agents were designed and synthesized to combat severely bacterial resistance. Bioactivity assessment identified that 3-hydroxylphenyl aminophosphonate 6f with low hemolytic activity not only exhibited excellent inhibition potency against Staphylococcus aureus at low concentration (0.5 µg/mL) in vitro but also showed considerable antibacterial potency in vivo. Meanwhile, the active compound 6f was capable of eradicating the S. aureus biofilm, thus alleviating the development of S. aureus resistance. Furthermore, the drug combination of compound 6f with norfloxacin could enhance the antibacterial efficacy. Mechanistic explorations manifested that molecule 6f was able to destroy the integrity of cell membrane, which resulted in the leakage of protein and metabolism inhibition. The cellular redox homeostasis was interfered through inducing the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to the reduction of glutathione (GSH) activity and lipid peroxidation. Furthermore, compound 6f could intercalate into DNA base pair to hinder normal biological function. The above results provided powerful information for the further development of coumarin aminophosphonates as antibacterial agents.


Assuntos
Aminocumarinas , Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Organofosfonatos , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Aminocumarinas/química , Aminocumarinas/farmacologia , Farmacorresistência Bacteriana , Organofosfonatos/química , Organofosfonatos/farmacologia
12.
Front Immunol ; 13: 1037504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532015

RESUMO

Background: Endometriosis is recognized as an estrogen-dependent inflammation disorder, estimated to affect 8%-15% of women of childbearing age. Currently, the etiology and pathogenesis of endometriosis are not completely clear. Underlying mechanism for endometriosis is still under debate and needs further exploration. The involvement of transcription factors and immune mediations may be involved in the pathophysiological process of endometriosis, but the specific mechanism remains to be explored. This study aims to investigate the underlying molecular mechanisms in endometriosis. Methods: The gene expression profile of endometriosis was obtained from the gene expression omnibus (GEO) database. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied to the endometriosis GSE7305 datasets. Cibersort and MCP-counter were used to explore the immune response gene sets, immune response pathway, and immune environment. Differentially expressed genes (DEGs) were identified and screened. Common biological pathways were being investigated using the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Transcription factors were from The Human Transcription Factors. The least absolute shrinkage and selection operator (Lasso) model identified four differential expressions of transcription factors (AEBP1, HOXB6, KLF2, and RORB). Their diagnostic value was calculated by receiver operating characteristic (ROC) curve analysis and validated in the validation cohort (GSE11691, GSE23339). By constructing the interaction network of crucial transcription factors, weighted gene coexpression network analysis (WGCNA) was used to search for key module genes. Metascape was used for enrichment analysis of essential module genes and obtained HOXB6, KLF2. The HOXB6 and KLF2 were further verified as the only two intersection genes according to Support Vector Machine Recursive Feature Elimination (SVM-RFE) and random forest models. We constructed ceRNA (lncRNA-miRNA-mRNA) networks with four potential transcription factors. Finally, we performed molecular docking for goserelin and dienogest with four transcription factors (AEBP1, HOXB6, KLF2, and RORB) to screen potential drug targets. Results: Immune and metabolic pathways were enriched in GSVA and GSEA. In single sample gene set enrichment analysis (ssGSEA), most immune infiltrating cells, immune response gene sets, and immune response pathways are differentially expressed between endometriosis and non-endometriosis. Twenty-seven transcription factors were screened from differentially expressed genes. Most of the twenty-seven transcription factors were correlated with immune infiltrating cells, immune response gene sets and immune response pathways. Furthermore, Adipocyte enhancer binding protein 1 (AEBP1), Homeobox B6 (HOXB6), Kruppel Like Factor 2 (KLF2) and RAR Related Orphan Receptor B (RORB) were selected out from twenty-seven transcription factors. ROC analysis showed that the four genes had a high diagnostic value for endometriosis. In addition, KLF2 and HOXB6 were found to play particularly important roles in multiple modules (String, WGCNA, SVM-RFE, random forest) on the gene interaction network. Using the ceRNA network, we found that NEAT1 may regulate the expressions of AEBP1, HOXB6 and RORB, while X Inactive Specific Transcript (XIST) may control the expressions of HOXB6, RORB and KLF2. Finally, we found that goserelin and dienogest may be potential drugs to regulate AEBP1, HOXB6, KLF2 and RORB through molecular docking. Conclusions: AEBP1, HOXB6, KLF2, and RORB may be potential biomarkers for endometriosis. Two of them, KLF2 and HOXB6, are critical molecules in the gene interaction network of endometriosis. Discovered by molecular docking, AEBP1, HOXB6, KLF2, and RORB are targets for goserelin and dienogest.


Assuntos
Endometriose , RNA Longo não Codificante , Humanos , Feminino , Fatores de Transcrição/genética , Gosserrelina , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Endometriose/tratamento farmacológico , Endometriose/genética , Carboxipeptidases , Proteínas Repressoras
13.
ACS Synth Biol ; 11(12): 4065-4076, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36379006

RESUMO

Fengycin is a lipopeptide with broad-spectrum antifungal activity. However, its low yield limits its commercial application. Therefore, we iteratively edited multiple target genes associated with fengycin synthesis by combinatorial metabolic engineering. The ability of Bacillus subtilis 168 to manufacture lipopeptides was restored, and the fengycin titer was 1.81 mg/L. Fengycin production was further increased to 174.63 mg/L after knocking out pathways associated with surfactin and bacillaene synthesis and replacing the native promoter (PppsA) with the Pveg promoter. Subsequently, fengycin levels were elevated to 258.52 mg/L by upregulating the expression of relevant genes involved in the fatty acid pathway. After blocking spore and biofilm formation, fengycin production reached 302.51 mg/L. Finally, fengycin production was increased to approximately 885.37 mg/L after adding threonine in the optimized culture medium, which was 488-fold higher compared with that of the initial strain. Integrated strain engineering provides a strategy to construct a system for improving fengycin production.


Assuntos
Bacillus subtilis , Lipopeptídeos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Regiões Promotoras Genéticas , Engenharia Metabólica
14.
Comput Biol Med ; 149: 106034, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058068

RESUMO

In medical scenarios, obtaining pixel-level annotations for medical images is expensive and time-consuming, even if considering its importance for automating segmentation tasks. Due to the scarcity of labels in the training phase, semi-supervised methods are widely applied for various medical tasks. To better utilize the unlabeled data, several works have explored the method of uncertainty estimation and exhibited huge success. Despite their impressive performance, we believe that the underlying information of the unlabeled data has been largely unexplored. Meanwhile, there is an extreme foreground-background class imbalance during the training phase of semantic segmentation, which may cause a vast number of easily classified samples to overwhelm the loss during training and lead to a model collapse. In this paper, we proposed uncertainty teacher with dense focal loss, a method that can take good advantage of unlabeled data simultaneously and address the class imbalance problem, based on Deep Co-Training. On one hand, the uncertainty teacher framework is presented to better utilize the unlabeled data by introducing a novel method to regularize uncertainty in the right direction, and the uncertainty is estimated by Monte Carlo Sampling. On the other hand, the dense focal loss is proposed to help solve the class imbalance problem between different classes of samples in medical image segmentation and effectively convert the multi-variate entropy into a multiple binary entropy. We implemented our method on three challenging public medical datasets and experimental results have shown desirable improvements to state-of-the-art.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Entropia , Processamento de Imagem Assistida por Computador/métodos , Incerteza
15.
Bioorg Chem ; 124: 105855, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576797

RESUMO

A novel type of coumarin thiazoles as unique multi-targeting antimicrobial agents were developed through four steps including cyclization, nucleophilic substitution and condensation starting from commercial resorcine. Most of the prepared coumarin thiazoles displayed favorable inhibitory potency against the tested strains. Noticeably, methyl oxime V-a exerted potent inhibitory efficacy against methicillin-resistant Staphylococcus aureus (MRSA) at low concentration (1 µg/mL) and showed broad antimicrobial spectrum. Medicinal bioevaluations revealed that the active molecule V-a exhibited low toxicity toward mammalian cells, rapidly killing effect, good capability of eradicating MRSA biofilms and unobvious probability to engender drug resistance. Chemical biological methods were employed to investigate preliminary mechanism, which indicated that compound V-a was able to damage the integrity of membrane to trigger leakage of protein, insert into MRSA DNA to block its replication and induce the generation of reactive oxygen species (ROS) to inhibit bacterial growth. Computational study manifested that low HOMO-LUMO energy gap of molecule V-a was favorable to exert high antimicrobial activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Cumarínicos/química , Cumarínicos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana , Esqueleto , Tiazóis/química , Tiazóis/farmacologia
16.
J Virol ; 96(9): e0003822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35420442

RESUMO

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Assuntos
COVID-19 , Pulmão , Neutrófilos , Animais , COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/virologia , Linfopenia/virologia , Camundongos , Neutrófilos/imunologia , SARS-CoV-2 , Baço/patologia , Baço/virologia
17.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277473

RESUMO

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Linfócitos T/metabolismo , Animais , Células CACO-2 , Chlorocebus aethiops , Humanos , Células Vero
18.
Emerg Microbes Infect ; 11(1): 902-913, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35240947

RESUMO

The immune memory of over 400 million COVID-19 convalescents is not completely understood. In this integrated study, we recorded the post-acute sequelae symptoms and tested the immune memories, including circulating antibodies, memory B cell, and memory CD4 or CD8 T cell responses of a cohort of 65 COVID-19 patients over 1-year after infection. Our data show that 48% of them still have one or more sequelae symptoms and all of them maintain at least one of the immune components. The chances of having sequelae symptoms or having better immune memory are associated with peak disease severity. We did four-time points sampling per subject to precisely understand the kinetics of durability of SARS-CoV-2 circulating antibodies. We found that the RBD IgG levels likely reach a stable plateau at around 6 months, albeit it is waning at the first 6 months after infection. At 1-year after infection, more than 90% of the convalescents generated memory CD4 or CD8 T memory responses, preferably against the SARS-CoV-2 M peptide pool. The convalescents also have polyfunctional and central memory T cells that could provide rapid and efficient response to SARS-CoV-2 re-infection. Based on this information, we assessed the immune protection against the Omicron variant and concluded that convalescents should still induce effective T cell immunity against the Omicron. By studying the circulating antibodies and memory B or T cell responses to SARS-CoV-2 in an integrated manner, our study provides insight into the understanding of protective immunity against diseases caused by secondary SARS-CoV-2 infection.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunidade Celular , Estudos Longitudinais , SARS-CoV-2
19.
Pediatr Allergy Immunol ; 33(2): e13738, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212036

RESUMO

BACKGROUND: There are a limited number of validated questionnaires available for use in the clinical screening for allergic rhinitis (AR) in children ≤3 years old. We developed a novel self-reported questionnaire and assessed its accuracy and reliability. METHODS: After establishing a pool of items, which were screened by experts, the Young Children Allergic Rhinitis Questionnaire (YCAR-Q) was administered to a birth cohort in the Shunyi District (Beijing, China). The electronic version of the YCAR-Q was distributed through the online community. Children were invited to visit a physician for examination. The diagnostic criteria included symptoms, physical examination findings, and specific serum immunoglobulin E tests. Each item on the questionnaire was evaluated, and the questionnaire's internal consistency, content validity, criterion-related validity, and diagnostic accuracy were assessed. RESULTS: The six-item YCAR-Q was distributed to 7423 parents, and 3037 valid questionnaires were recovered. In total, 1521 children visited a physician for examination, of which 82 were found to have AR. In terms of internal consistency, Cronbach's coefficient was 0.777 and all six questionnaire items were retained. The average scale-level content validity index value was 1. The area under the curve was 0.759. The total scores ranged from 0 to 6, and the cutoff value for diagnosing AR was 3, with a sensitivity of 68.29% and a specificity of 76.58%. CONCLUSIONS: This cross-sectional study indicated that the YCAR-Q could detect AR in children ≤3 years old. This brief and simple test may be used effectively in clinical practice.


Assuntos
Rinite Alérgica , Criança , Pré-Escolar , Estudos Transversais , Humanos , Programas de Rastreamento , Reprodutibilidade dos Testes , Rinite Alérgica/diagnóstico , Rinite Alérgica/epidemiologia , Inquéritos e Questionários
20.
Eur J Med Chem ; 232: 114192, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168149

RESUMO

Unique coumarin conjugates with thiazolidinone as novel structural antibacterial modulators were exploited to combat the lethal multidrug-resistant bacterial infections. Bioactivity evaluation identified that indole-incorporated coumarin thiazolidinone conjugate 14a with low cytotoxicity to mammalian cells showed a broad antibacterial spectrum and exerted potent inhibition efficiencies to the tested germs at low concentrations (0.25-2 µg/mL). Moreover, the favorable performance of 14a in eradicating bacterial biofilm was beneficial to avert developing drug resistance. Mechanistic explorations revealed that molecule 14a was able to destroy cell membrane, leading to the leakage of intracellular materials and metabolism inhibition. The accumulation of excess reactive oxygen species (ROS) mediated by compound 14a could impede glutathione (GSH) activity and induce lipid peroxidation to suppress bacteria growth. Furthermore, compound 14a could not only intercalate into DNA base pair but also take part in non-covalent interaction with DNA gyrase B to hinder their biological function. Quantum chemical study indicated that molecule 14a had low HOMO-LUMO energy gap, which resulted in more stabilizing interactions and was conducive to displaying better antibacterial activity. ADMET analysis manifested that 14a possessed promising pharmacokinetic properties.


Assuntos
Antibacterianos , DNA Girase , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...