Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0008824, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38386781

RESUMO

Type I and type II IFNs are important immune modulators in both innate and adaptive immunity. They transmit signaling by activating JAK-STAT pathways. Sirtuin 1 (SIRT1), a class III NAD+-dependent deacetylase, has multiple functions in a variety of physiological processes. Here, we characterized the novel functions of SIRT1 in the regulation of type I and type II IFN-induced signaling. Overexpression of SIRT1 inhibited type I and type II IFN-induced interferon-stimulated response element activation. In contrast, knockout of SIRT1 promoted type I and type II IFN-induced expression of ISGs and inhibited viral replication. Treatment with SIRT1 inhibitor EX527 had similar positive effects. SIRT1 physically associated with STAT1 or STAT3, and this interaction was enhanced by IFN stimulation or viral infection. By deacetylating STAT1 at K673 and STAT3 at K679/K685/K707/K709, SIRT1 downregulated the phosphorylation of STAT1 (Y701) and STAT3 (Y705). Sirt1+/- primary peritoneal macrophages and Sirt1+/- mice exhibited enhanced IFN-induced signaling and antiviral activity. Thus, SIRT1 is a novel negative regulator of type I and type II IFN-induced signaling through its deacetylase activity.IMPORTANCESIRT1 has been reported in the precise regulation of antiviral (RNA and DNA) immunity. However, its functions in type I and type II IFN-induced signaling are still unclear. In this study, we deciphered the important functions of SIRT1 in both type I and type II IFN-induced JAK-STAT signaling and explored the potential acting mechanisms. It is helpful for understanding the regulatory roles of SIRT1 at different levels of IFN signaling. It also consolidates the notion that SIRT1 is an important target for intervention in viral infection, inflammatory diseases, or even interferon-related therapies.


Assuntos
Interferon Tipo I , Sirtuína 1 , Viroses , Animais , Camundongos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon gama , Fosforilação , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Viroses/imunologia
2.
Int Immunopharmacol ; 118: 110040, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001379

RESUMO

The innate immune responses are tightly regulated to ensure effective clearance of invading pathogens and avoid excessive inflammation. Ubiquitination and deubiquitination are important post-translational modifications in antiviral immune responses. Here, we discovered deubiquitinase USP47 as a novel negative immune system regulator. Overexpression of USP47 repressed Sendai virus, poly(I:C) and poly(dA:dT)-induced ISRE and IFN-ß activation, along with reduced IFNB1 transcription and enhanced viral replication. Knockdown of USP47 expression had the opposite effects. Dual-luciferase and phosphorylation assays showed that USP47 targeted downstream of MAVS and upstream of TBK1. Additional co-immunoprecipitation assays suggested that USP47 interacted with TRAF3 and TRAF6. Importantly, USP47 removed K63-linked polyubiquitin chains from TRAF3 and TRAF6. Hence, we describe a novel modulator of the antiviral innate immune response, USP47, which removes K63-linked polyubiquitins from TRAF3 and TRAF6, leading to reduced type I IFN signaling.


Assuntos
Interferon Tipo I , Vírus , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Antivirais , Ubiquitinação , Enzimas Desubiquitinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA