Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8636-8641, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687978

RESUMO

Removal of carbon dioxide (CO2) from a CO2/N2 mixture by utilizing CO2-selective sorbents is important from the perspective of energy security and environmental sustainability. Herein, a microporous metal-organic framework (MOF) composed of manganese(II) and a bifunctional linker 5-(4H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid (H2L), [Mn(HL)2] (1) is designed and synthesized using a hydrothermal method. Characterized by single-crystal X-ray diffraction (SCXRD), a microporous channel was found in the structure of compound 1 along the a-axis. Attributed to hydrogen-binding interactions between CO2 molecules and N- and O-donor ligands in its microporous one-dimensional (1D) channel, compound 1 exhibits favorable adsorption of CO2 over N2. Further, verified by experimental breakthrough tests, the CO2/N2 mixture can be separated efficiently. This work provides potential guidance for designing CO2-selective MOFs for CO2/N2 separation.

2.
J Am Chem Soc ; 145(39): 21483-21490, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37736678

RESUMO

One-step adsorptive purification of ethylene (C2H4) from a ternary mixture of acetylene (C2H2), C2H4, and ethane (C2H6) by a single material is of great importance but challenging in the petrochemical industry. Herein, a chemically robust olefin-linked covalent organic framework (COF), NKCOF-62, is designed and synthesized by a melt polymerization method employing tetramethylpyrazine and terephthalaldehyde as cheap monomers. This method avoids most of the disadvantages of classical solvothermal methods, which enable the cost-effective kilogram fabrication of olefin-linked COFs in one pot. Furthermore, NKCOF-62 shows remarkably selective adsorption of C2H2 and C2H6 over C2H4 thanks to its unique pore environments and suitable pore size. Breakthrough experiments demonstrate that polymer-grade C2H4 can be directly obtained from C2H2/C2H6/C2H4 (1/1/1) ternary mixtures through a single separation process. Notably, NKCOF-62 is the first demonstration of the potential to use COFs for C2H2/C2H6/C2H4 separation, which provides a blueprint for the design and construction of robust COFs for industrial gas separations.

3.
Angew Chem Int Ed Engl ; 62(32): e202305390, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261869

RESUMO

Adsorption-based removal of carbon dioxide (CO2 ) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co-adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2 -selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal-organic framework (MOF) with unprecedented [Mn86 ] nanocages. Attributed to the existence of unique enzyme-like confined pockets, strong coordination interactions and dipole-dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record-high selectivities of CO2 /CH4 and CO2 /N2 mixtures. Highly efficient CO2 /C2 H2 , CO2 /CH4 , and CO2 /N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation.

4.
Angew Chem Int Ed Engl ; 62(8): e202217662, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585907

RESUMO

Two C2 H6 -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2 H6 /C2 H4 ) under humid conditions to produce polymer-grade pure C2 H4 . Experimental results reveal that these two MOFs not only adsorb a high amount of C2 H6 but also display good C2 H6 /C2 H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2 H6 /C2 H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2 H6 /C2 H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.

5.
Angew Chem Int Ed Engl ; 62(4): e202216318, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36409291

RESUMO

Regarding the global energy crisis, it is of profound significance to develop spontaneous power generators that harvest natural energy. Fabricating humidity-responsive actuators that can conduct such energy transduction is of paramount importance. Herein, we incorporate covalent organic frameworks with flexible polyethylene glycol to fabricate rigid-flexible coupled membrane actuators. This strategy significantly improves the mechanical properties and humidity-responsive performance of the actuators, meanwhile, the existence of ordered structures enables us to unveil the actuation mechanism. These high-performance actuators can achieve various actuation applications and exhibit interesting self-oscillation behavior above a water surface. Finally, after being coupled with a piezoelectric film, the bilayer device can spontaneously output electricity over 2 days. This work paves a new avenue to fabricate rigid-flexible coupled actuators for self-sustained energy transduction.

6.
J Am Chem Soc ; 144(50): 23081-23088, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484259

RESUMO

Efficient propyne/propylene separation to obtain polymer-grade propylene is a crucial and challenging process in industrial production, but it has not yet been realized in the covalent organic framework (COF) field. Addressing this challenge, we synthesize two three-dimensional COF adsorbents via a [8 + 4] construction approach based on an octatopic aldehyde monomer. Upon using the continuous rotation electron diffraction technique and structural simulation, both COFs are successfully determined as rare flu topology. Various characterization techniques prove that both COFs exhibit high crystallinity, high porosity, and good stability. Attributed to their interconnected micropores and nonpolar pore environment, these COFs can efficiently remove trace amounts of propyne from the propyne/propylene (1/99, and 0.1/99.9, v/v) mixture to obtain high-purity propylene (>99.99%), validated by dynamic breakthrough experiments. This work paves a new avenue for propyne/propylene separation using COFs as highly efficient adsorbents.

7.
J Am Chem Soc ; 144(12): 5643-5652, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35313103

RESUMO

Developing cost-/energy-efficient separation techniques for purifying ethylene from an ethylene/ethane mixture is highly important but very challenging in the industrial process. Herein, using a bottom-up [8 + 2] construction approach, we rationally designed and synthesized three three-dimensional covalent organic frameworks (COFs) with 8-connected bcu networks, which can selectively remove ethane from an ethylene/ethane mixture with high efficiency. These COF materials, which are fabricated by the condensation reaction of a customer-designed octatopic aldehyde monomer with linear diamino linkers, possess high crystallinity, good structural robustness, and high porosity. Attributed to the well-organized micro-sized pores with a nonpolar/inert pore environment, these COFs display high ethane adsorption capacity and good selectivity over ethylene, making them among the best ethane-selective adsorbents for ethylene purification. Their excellent ethylene/ethane separation performance is validated by dynamic breakthrough experiments with high-purity ethylene (>99.99%) produced through a single adsorption process. The separation performance surpasses all reported C2H6-selective COFs and even some benchmark metal-organic frameworks. This work provides important guidance for the design of new adsorbents for value-added gas purification.

8.
Angew Chem Int Ed Engl ; 60(49): 25942-25948, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499385

RESUMO

Self-assembly of N,N,N',N'-tetrakis(4-carboxyphenyl)-1,4-phenylenediamine with the help of different solvents provides isostructural hydrogen-bonded organic frameworks (HOF-30). Single-crystal X-ray diffraction (SCXRD) analysis reveals HOF-30 possesses 3D ten-fold interpenetrated dia nets connected by two kinds of hydrogen bonds, namely solvent-bridged carboxyl dimers and carboxyl⋅⋅⋅carboxyl dimers. Degassing treatment for HOF-30 yields HOF-30a with 3D ten-fold interpenetrated dia nets but linked with sole carboxyl⋅⋅⋅carboxyl dimers. Reversible hydrogen-bond-to-hydrogen-bond transformation between solvent-bridged carboxyl dimers in HOF-30 and carboxyl⋅⋅⋅carboxyl dimers in HOF-30a has been unveiled by single-crystal and powder X-ray diffraction. In addition, HOF-30a enables the selective adsorption of propyne over propylene according to single-component sorption and breakthrough experiments. The preferred propyne location in HOF has also been identified by SCXRD test.

9.
J Am Chem Soc ; 143(23): 8654-8660, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34077659

RESUMO

The development of new techniques and materials that can separate ethylene from ethane is highly relevant in modern applications. Although adsorption-based separation techniques using metal-organic frameworks (MOFs) have gained increasing attention, the relatively low stability (especially water resistance) and unscalable synthesis of MOFs severely limit their application in real industrial scenarios. Addressing these challenges, we rationally designed and synthesized two new C2H6-selective MOF adsorbents (NKMOF-8-Br and -Me) with ultrahigh chemical and thermal stability, including water resistance. Attributed to the nonpolar/hydrophobic pore environments and appropriate pore apertures, the MOFs can capture C2 hydrocarbon gases at ambient conditions even in high humidity. The single-crystal structures of gas@NKMOF-8 realized the direct visualization of adsorption sites of the gases. Both the single-crystal data and simulated data elucidate the mechanism of selective adsorption. Moreover, the NKMOF-8 possesses high C2H6 adsorption capacity and high selectivity, allowing for efficient C2H6/C2H4 separation, as verified by experimental breakthrough tests. Most importantly, NKMOF-8-Br and -Me can be scalably synthesized through stirring at room temperature in minutes, which confers them with great potential for industrial application. This work offers new adsorbents that can address major chemical industrial challenges and provides an in-depth understanding of the gas binding sites in a visual manner.

10.
Top Curr Chem (Cham) ; 378(2): 25, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067113

RESUMO

Two-dimensional (2D) metal-organic frameworks (MOFs) belong to a subgroup of MOFs reminiscent of graphite and covalent organic frameworks (COFs). In the past decade, conductive 2D MOFs have received increasing attention due to their relatively high charge carrier mobility and low resistivity that originate from in-plane charge delocalization and extended π conjugation within the layers. This review comprises the current state-of-the-art of the representative progress in theoretical exploration and electronic applications of conductive 2D MOFs. Special emphasis is placed on the intrinsic relations between the structural factors and the electronic properties of conductive 2D MOFs. This review will provide guidance for researchers to design and synthesize conductive 2D MOFs for advanced applications.

11.
Molecules ; 23(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201888

RESUMO

We aimed to develop new effective catalysts for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. A kind of Mx+LClx coordination complex was fabricated based on the chelating tridentate ligand 2,6-bis[1-(phenylimino)ethyl] pyridine (L). The obtained products were characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. It was found that the catalytic activity of the complexes with different metal ions, the same ligand differed and co-catalyst, where the order of greatest to least catalytic activity was 2 > 3 > 1. The catalytic system composed of complex 2 and DMAP proved to have the better catalytic performance. The yields for complex 2 systems was 86.7% under the reaction conditions of 100 °C, 2.5 MPa, and 4 h. The TOF was 1026 h-¹ under the reaction conditions of 200 °C, 2.5 MPa, and 1 h. We also explored the influence of time, pressure, temperature, and reaction substrate concentration on the catalytic reactions. A hypothetical catalytic reaction mechanism is proposed based on density functional theory (DFT) calculations and the catalytic reaction results.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Compostos de Epóxi/química , Propano/análogos & derivados , Piridinas/química , Catálise , Cristalografia por Raios X , Reação de Cicloadição , Ligantes , Conformação Molecular , Propano/síntese química , Propano/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...