Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5368-5381, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270092

RESUMO

Aseptic loosening presents a formidable challenge within the realm of bone tissue engineering, playing a pivotal role in the occurrence of joint replacement failures. The development of therapeutic materials characterized by an optimal combination of mechanical properties and biocompatibility is imperative to ensure the enduring functionality of bone implants over extended periods. In this context, this study introduced an injectable, temperature-sensitive irisin/oxidized starch/gelatin hybrid hydrogel (I-OG) system. The hierarchical cross-linked structure endows the I-OG hydrogel with controlled and adjustable physical and chemical properties, making it easy to adapt to different clinical environments. This hydrogel exhibits satisfactory injectable properties, excellent biocompatibility, and good temperature sensitivity. The sol-gel point of the I-OG hydrogel, close to the body temperature, allows it to cushion the shaking of the implant and maintain an intact state during compression of bone tissue. Significantly, the I-OG hydrogel effectively filled the gap between the implant and bone tissue, successfully inhibiting aseptic loosening induced by titanium particles, a result that confirmed the slow release of the irisin protein from the gel. Collectively, the findings from this study strongly support the proposition that functional hydrogels, typified by the I-OG system, hold substantial promise as an accessible and efficient treatment strategy for mitigating aseptic loosening.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/farmacologia , Hidrogéis/química , Materiais Biocompatíveis/química , Gelatina/química , Fibronectinas , Osso e Ossos
2.
Br J Radiol ; 97(1155): 652-659, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38268475

RESUMO

OBJECTIVES: This research aimed to develop a radiomics-clinical nomogram based on enhanced thin-section CT radiomics and clinical features for the purpose of predicting the presence or absence of metastasis in lymph nodes among patients with resectable esophageal squamous cell carcinoma (ESCC). METHODS: This study examined the data of 256 patients with ESCC, including 140 cases with lymph node metastasis. Clinical information was gathered for each case, and radiomics features were derived from thin-section contrast-enhanced CT with the help of a 3D slicer. To validate risk factors that are independent of the clinical and radiomics models, least absolute shrinkage and selection operator logistic regression analysis was used. A nomogram pattern was constructed based on the radiomics features and clinical characteristics. The receiver operating characteristic curve and Brier Score were used to evaluate the model's discriminatory ability, the calibration plot to evaluate the model's calibration, and the decision curve analysis to evaluate the model's clinical utility. The confusion matrix was used to evaluate the applicability of the model. To evaluate the efficacy of the model, 1000 rounds of 5-fold cross-validation were conducted. RESULTS: The clinical model identified esophageal wall thickness and clinical T (cT) stage as independent risk factors, whereas the radiomics pattern was built based on 4 radiomics features chosen at random. Area under the curve (AUC) values of 0.684 and 0.701 are observed for the radiomics approach and clinical model, respectively. The AUC of nomogram combining radiomics and clinical features was 0.711. The calibration plot showed good agreement between the incidence of lymph node metastasis predicted by the nomogram and the actual probability of occurrence. The nomogram model displayed acceptable levels of performance. After 1000 rounds of 5-fold cross-validation, the AUC and Brier score had median values of 0.702 (IQR: 0.65, 7.49) and 0.21 (IQR: 0.20, 0.23), respectively. High-risk patients (risk point >110) were found to have an increased risk of lymph node metastasis [odds ratio (OR) = 5.15, 95% CI, 2.95-8.99] based on the risk categorization. CONCLUSION: A successful preoperative prediction performance for metastasis to the lymph nodes among patients with ESCC was demonstrated by the nomogram that incorporated CT radiomics, wall thickness, and cT stage. ADVANCES IN KNOWLEDGE: This study demonstrates a novel radiomics-clinical nomogram for lymph node metastasis prediction in ESCC, which helps physicians determine lymph node status preoperatively.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Nomogramas , Metástase Linfática/diagnóstico por imagem , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/cirurgia , Radiômica , Estudos Retrospectivos , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem
3.
Front Mol Biosci ; 10: 1200354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388244

RESUMO

Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating from epithelial cells and one of the most common causes of death from gynecological cancers. The objective of this study was to develop a prediction model based on extracellular matrix proteins, using artificial intelligence techniques. The model aimed to aid healthcare professionals to predict the overall survival of patients with ovarian cancer (OC) and determine the efficacy of immunotherapy. Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection was used as the study dataset, whereas the TCGA-Pancancer dataset was used for validation. The prognostic importance of 1068 known extracellular matrix proteins for OC were determined by the Random Forest algorithm and the Lasso algorithm establishing the ECM risk score. Based on the gene expression data, the differences in mRNA abundance, tumour mutation burden (TMB) and tumour microenvironment (TME) between the high- and low-risk groups were assessed. Results: Combining multiple artificial intelligence algorithms we were able to identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5, TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1, FGF23, and confirm the validity of this ECM risk score for overall survival prediction. Several other parameters were identified as independent prognostic factors for OC by multivariate COX analysis. The analysis showed that thyroglobulin (TG) targeted immunotherapy was more effective in the high ECM risk score group, while the low ECM risk score group was more sensitive to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM risk scores had higher immune checkpoint gene expression and immunophenoscore levels and responded better to immunotherapy. Conclusion: The ECM risk score is an accurate tool to assess the patient's sensitivity to immunotherapy and forecast OC prognosis.

4.
J Periodontal Res ; 58(2): 336-349, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625247

RESUMO

BACKGROUND: Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. OBJECTIVES: To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. MATERIALS AND METHODS: Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. RESULTS: Approximately 1000 genes were differentially expressed between control and irisin-treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin-exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim-like structure on the outer region of the hPDL spheroids, ECM-related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. CONCLUSIONS: Irisin altered the morphology in primary hPDL cell-derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.


Assuntos
Diferenciação Celular , Matriz Extracelular , Fibronectinas , Ligamento Periodontal , Humanos , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/farmacologia , Osteogênese/genética , Ligamento Periodontal/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Células em Três Dimensões
5.
Biomater Adv ; 137: 212871, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929246

RESUMO

Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300-1200 nm) with highly interconnected porous structures (30-75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1-14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Humanos , Nanofibras/química , Porosidade , Alicerces Teciduais/química , Cicatrização
6.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454778

RESUMO

Testicular Germ Cell Tumour (TGCT) is one of the most common tumours in young men. Increasing evidence shows that the extracellular matrix has a key role in the prognosis and metastasis of various human cancers. This study analysed the relationship between the matrix protein ameloblastin (AMBN) and potential biological markers associated with TGCT diagnosis and prognosis. The relationship between AMBN and TGCT prognosis was determined by bioinformatic analysis using the expression profiles of three RNAs (long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs) from The Cancer Genome Atlas (TCGA) database, and available clinical information of the corresponding patients. Prediction and validation of competitive endogenous RNA (ceRNA) regulatory networks related to AMBN was performed. AMBN and its associated ceRNA regulatory network were found to be related to the recurrence of TGCT, and LINC02701 may be used as a diagnostic factor in TGCT. Furthermore, we identified PELATON (Plaque Enriched LncRNA In Atherosclerotic And Inflammatory Bowel Macrophage Regulation) as an independent prognostic factor for TGCT progression-free interval.

7.
Exp Ther Med ; 22(4): 1119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504573

RESUMO

As an activator of sirtuin 1, resveratrol has become an extensively reviewed anti-inflammatory and anti-aging drug in recent years, and it has been widely studied for the treatment of energy control and endocrine diseases. The present study attempted to characterize the role of resveratrol in osteolysis induced by titanium (Ti) alloy particles and Ti pins in vitro and in vivo. In vitro, bone marrow mesenchymal stem cells were cultured with Ti alloy particles to simulate osteolysis. Cell viability and the expression levels of proteins associated with osteogenesis and the Wnt/ß-catenin signaling pathway, including Runt-related transcription factor 2 (Runx2), alkaline phosphatase, osteocalcin, ß-catenin, lymphoid enhancer-binding factor 1 and transcription factor 4, were increased following treatment with resveratrol after 21 days of osteogenic differentiation. In vivo, a Ti pin model in C57BL/6J mice was used to study the anti-osteolysis effect of resveratrol on the peri-prosthetic bone. The pulling force of the Ti alloy pin was increased in a dose-dependent manner in the resveratrol groups compared with the control group. Furthermore, the results of micro-CT scanning revealed that the bone volume and the bone surface/volume ratio in the periprosthetic tissue were increased in the resveratrol-treated groups, particularly in the high-dose resveratrol group. In addition, immunohistochemistry demonstrated that Runx2 expression was upregulated in the high-dose resveratrol group. In conclusion, the results of the present study indicated that resveratrol may inhibit Ti particle-induced osteolysis via activation of the Wnt/ß-catenin signaling pathway in vitro and in vivo.

8.
Arch Oral Biol ; 124: 105061, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33508625

RESUMO

OBJECTIVE: To examine the expression and regulation of fibronectin type III domain-containing protein 5/irisin (FNDC5/irisin) in primary human periodontal ligament (hPDL) cells, dental pulp stem cells (hDPCs) and osteoblasts (hOBs). METHODS: FNDC5/irisin was identified in sections of paraffin embedded rat maxillae, cryo-sections of 3D cultured spheroids hPDL cells, hDPCs and hOBs, 2D cultured hPDL cells, hDPCs and hOBs by immunohistochemistry. The expression of FNDC5/irisin was identified by qPCR, followed by sequencing of the qPCR product. Regulation of FNDC5/irisin expression in hPDL cells, hDPCs and hOBs were evaluated after administration of different concentrations of irisin and all-trans retinoic acid (ATRA). qPCR and ELISA were used to identify expression and secretion of FNDC5/irisin in odontoblast-like differentiation of hDPCs. RESULTS: FNDC5/irisin was confirmed to be present in rat periodontium and dental pulp regions, as well as in 2D and 3D cultured hPDL cells, hDPCs and hOBs. BLAST analyses verified the generated nucleotide alignments matched human FNDC5/irisin. FNDC5/irisin gene expression was enhanced during odontoblast-like differentiation of hDPCs whereas the secretion of the protein was decreased compared to control. The protein signals in rat periodontal and pulpal tissues were higher than that of alveolar bone, and the expression of FNDC5/irisin was differently regulated by recombinant irisin and ATRA in hPDL cells and hDPCs compared to hOBs. CONCLUSIONS: FNDC5/irisin expression was verified in rodent periodontium and dental pulp, and in hPDL cells, hDPCs and hOBs. The FNDC5/irisin expression was regulated by recombinant irisin and ATRA. Finally, expression and secretion of FNDC5/irisin were affected during odontoblast-like differentiation of hDPCs.


Assuntos
Polpa Dentária , Ligamento Periodontal , Animais , Diferenciação Celular , Células Cultivadas , Fibronectinas , Humanos , Osteoblastos , Ratos , Células-Tronco
9.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33443286

RESUMO

Aseptic loosening following periprosthetic osteolysis is the primary complication that limits the lifetime of total joint arthroplasty (TJA). The wear particles trigger a chronic inflammation response in the periprosthetic tissue and turn over the bone balance to bone resorption. The present study aimed to investigate the possible effect and mechanism of strontium ranelate (SR), a clinically safe drug for osteoporosis, on particle-induced periprosthetic osteolysis. Thirty-six female C57BL/6j mice underwent tibial Ti-nail implantation to establish an animal model of aseptic loosening. After 12 weeks, micro-CT results showed that strontium ranelate could inhibit periprosthetic bone resorption. In vitro, Ti particles were used to stimulate RAW264.7 cell line to collect conditioned medium, and co-culture MC3T3-E1 cell line with conditioned medium to establish a cell model of aseptic loosening. The results of alkaline phosphatase (ALP) detection, immunofluorescence, and flow cytometry demonstrated that strontium ranelate could regulate the expression of OPG/RANKL, promote differentiation and mineralization, and inhibit apoptosis in osteoblasts. Moreover, we revealed that SR's exerted its therapeutic effect by down-regulating sclerostin, thereby activating the Wnt/ß-catenin signal pathway. Therefore, this research suggests that strontium ranelate could be a potential drug for the prevention and treatment of particle-induced aseptic loosening post-TJA.


Assuntos
Osteoblastos/efeitos dos fármacos , Osteólise/induzido quimicamente , Próteses e Implantes , Tiofenos/farmacologia , Titânio/farmacologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Meios de Cultivo Condicionados , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Células RAW 264.7
10.
Cytokine ; 136: 155292, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950809

RESUMO

Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a crucial role in osteoporosis. Irisin, an exercise-induced muscle-dependent myokine, has been reported to stimulate the development of brown adipose tissue and regulate energy expenditure. The present study aimed to investigate the effects of irisin on autophagy in BMSCs. Furthermore, the osteogenic differentiation ability was evaluated, as well as the activation of autophagy. It was found that 40 µM irisin for 48 h was an appropriate concentration and time period, with regards to cell viability, which was measured with a Cell Counting Kit-8. Moreover, the increasing expression levels of microtubule-associated protein light chain 3 (Lc3)-I/II and autophagy related 5 (Atg5) by irisin demonstrated the upregulation of autophagy. Mechanistically, bafilomycin A1 and Atg5 small interfering RNA were used to evaluate the possible mechanism of autophagy activated by irisin, and it was identified that irisin may upregulate autophagy by increasing the Atg12-Atg5-Atg16L complex. In addition, with the increasing level of autophagy, osteogenesis and the Wnt/ß-catenin signal pathway were also enhanced. However, inhibition of autophagy by bafilomycin A1 negatively regulated osteogenic differentiation. Collectively, the present results suggested that irisin may stimulate autophagy in BMSCs and that osteogenic differentiation may be enhanced by stimulating autophagy.


Assuntos
Autofagia/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Fibronectinas/imunologia , Células-Tronco Mesenquimais/imunologia , Osteogênese/imunologia , Via de Sinalização Wnt/imunologia , Animais , Camundongos
11.
Braz J Med Biol Res ; 51(9): e7414, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29995108

RESUMO

The imbalance between bone formation and osteolysis plays a key role in the pathogenesis of aseptic loosening. Strontium ranelate (SR) can promote bone formation and inhibit osteolysis. The aim of this study was to explore the role and mechanism of SR in aseptic loosening induced by wear particles. Twenty wild-type (WT) female C57BL/6j mice and 20 sclerostin-/- female C57BL/6j mice were used in this study. Mice were randomly divided into four groups: WT control group, WT SR group, knockout (KO) control group, and KO SR group. We found that SR enhanced the secretion of osteocalcin (0.72±0.007 in WT control group, 0.98±0.010 in WT SR group, P=0.000), Runx2 (0.34±0.005 in WT control group, 0.47±0.010 in WT SR group, P=0.000), ß-catenin (1.04±0.05 in WT control group, 1.22±0.02 in WT SR group, P=0.000), and osteoprotegerin (OPG) (0.59±0.03 in WT control group, 0.90±0.02 in WT SR group, P=0.000). SR significantly decreased the level of receptor activator for nuclear factor-κB ligand (RANKL) (1.78±0.08 in WT control group, 1.37±0.06 in WT SR group, P=0.000) and improved the protein ratio of OPG/RANKL, but these effects were not observed in sclerostin-/- mice. Our findings demonstrated that SR enhanced bone formation and inhibited bone resorption in a wear particle-mediated osteolysis model in wild-type mice, and this effect relied mainly on the down-regulation of sclerostin levels to ameliorate the inhibition of the canonical Wnt pathway.


Assuntos
Membros Artificiais , Reabsorção Óssea/tratamento farmacológico , Extremidade Inferior/cirurgia , Osteólise/tratamento farmacológico , Implantação de Prótese , Tiofenos/farmacologia , Animais , Fenômenos Biomecânicos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL
12.
Mol Med Rep ; 18(2): 1849-1857, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901109

RESUMO

Aseptic loosening and menopause­induced osteoporosis are caused by an imbalance between bone formation and osteolysis. With an aging population, the probability of simultaneous occurrence of such conditions in an elderly individual is increasing. Strontium ranelate (SR) is an anti­osteoporosis drug that promotes bone formation and inhibits osteolysis. The present study compared the effects of SR with those of the traditional anti­osteoporosis drug alendronate (ALN) using an ovariectomized mouse model of osteolysis. The degree of firmness of the prosthesis and the surrounding tissue was examined, a micro­CT scan of the prosthesis and the surrounding tissue was performed, and the levels of inflammatory and osteogenic and osteoclast factors were examined. It was observed that treatment with SR and ALN improved the bond between the prosthesis and the surrounding bone tissue by reducing the degree of osteolysis, thus improving the quality of bone around the prosthesis. SR increased the secretion of osteocalcin, runt­related transcription factor 2 and osteoprotegerin (OPG). It additionally decreased the expression of the receptor activator of nuclear factor­κB ligand (RANKL) and consequently increased the protein ratio OPG/RANKL, whereas ALN exhibited the opposite effect. Furthermore, SR and ALN suppressed tumor necrosis factor­α and interleukin­1ß production, with SR exerting a more marked effect. The present results demonstrate that SR and ALN may stimulate bone formation and inhibit bone resorption in the ovariectomized mouse model of wear particle­mediated osteolysis, with SR demonstrating better effects compared with ALN.


Assuntos
Osteólise/tratamento farmacológico , Osteoporose/tratamento farmacológico , Falha de Prótese/efeitos dos fármacos , Tiofenos/administração & dosagem , Idoso , Alendronato/administração & dosagem , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Osteocalcina/genética , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/genética , Osteólise/patologia , Osteoporose/genética , Osteoporose/patologia , Osteoprotegerina/genética
13.
Mol Med Rep ; 17(3): 3829-3836, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29257329

RESUMO

The present study aimed to investigate the effects of strontium ranelate (SR), an anti­osteoporotic drug, on osteolysis in an experimental mouse model of aseptic loosening. A total of 45 female C57BL/6J mice each received implantation of one titanium alloy pin into the tibia, followed by intraarticular injection of titanium particles. One week following surgery, mice were randomly divided into three groups: Control group (no additional treatment), SR625 group (treated with SR at a dose of 625 mg/kg/day), and SR1800 group (treated with SR at a dose of 1,800 mg/kg/day). SR was administered via oral gavage once every day for 12 weeks. Micro­computed tomography scanning and hematoxylin/eosin staining were used to assess osteolysis around the prosthesis. Immunohistochemistry and reverse transcription-quantitative polymerase chain reaction analysis were used to measure the expression of receptor activator of nuclear factor­κB ligand (RANKL) and osteoprotegerin (OPG). Compared with the control, the SR625 and SR1800 groups exhibited a significantly increased pulling force of the titanium alloy pin. Bone volume and the bone surface/volume ratio in the periprosthetic tissue were significantly increased in the SR­treated groups. Significant differences were observed between the SR1800 group and control group with respect to trabecular thickness and trabecular number. Mechanistically, SR downregulated the expression of RANKL and upregulated the expression of OPG in the periprosthetic tissue. In addition, SR was observed to inhibit wear particle­associated osteolysis in a dose­dependent manner. In conclusion, the present data illustrated that SR inhibited titanium particle­induced osteolysis in vivo.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osteólise/prevenção & controle , Osteoprotegerina/genética , Falha de Prótese/efeitos dos fármacos , Ligante RANK/genética , Tiofenos/farmacologia , Tíbia/efeitos dos fármacos , Administração Oral , Ligas , Animais , Biomarcadores/metabolismo , Interface Osso-Implante , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteólise/genética , Osteólise/metabolismo , Osteólise/patologia , Osteoprotegerina/agonistas , Osteoprotegerina/metabolismo , Material Particulado/análise , Próteses e Implantes , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Tíbia/cirurgia , Titânio/uso terapêutico
14.
Braz. j. med. biol. res ; 51(9): e7414, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951755

RESUMO

The imbalance between bone formation and osteolysis plays a key role in the pathogenesis of aseptic loosening. Strontium ranelate (SR) can promote bone formation and inhibit osteolysis. The aim of this study was to explore the role and mechanism of SR in aseptic loosening induced by wear particles. Twenty wild-type (WT) female C57BL/6j mice and 20 sclerostin-/- female C57BL/6j mice were used in this study. Mice were randomly divided into four groups: WT control group, WT SR group, knockout (KO) control group, and KO SR group. We found that SR enhanced the secretion of osteocalcin (0.72±0.007 in WT control group, 0.98±0.010 in WT SR group, P=0.000), Runx2 (0.34±0.005 in WT control group, 0.47±0.010 in WT SR group, P=0.000), β-catenin (1.04±0.05 in WT control group, 1.22±0.02 in WT SR group, P=0.000), and osteoprotegerin (OPG) (0.59±0.03 in WT control group, 0.90±0.02 in WT SR group, P=0.000). SR significantly decreased the level of receptor activator for nuclear factor-κB ligand (RANKL) (1.78±0.08 in WT control group, 1.37±0.06 in WT SR group, P=0.000) and improved the protein ratio of OPG/RANKL, but these effects were not observed in sclerostin-/- mice. Our findings demonstrated that SR enhanced bone formation and inhibited bone resorption in a wear particle-mediated osteolysis model in wild-type mice, and this effect relied mainly on the down-regulation of sclerostin levels to ameliorate the inhibition of the canonical Wnt pathway.


Assuntos
Animais , Feminino , Coelhos , Osteólise/tratamento farmacológico , Membros Artificiais , Tiofenos/farmacologia , Reabsorção Óssea/tratamento farmacológico , Implantação de Prótese , Extremidade Inferior/cirurgia , Fenômenos Biomecânicos , Ensaio de Imunoadsorção Enzimática , Western Blotting , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...