Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3646, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684683

RESUMO

The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.

2.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684692

RESUMO

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

3.
J Am Chem Soc ; 146(10): 6536-6543, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412553

RESUMO

The past decade has witnessed substantial progress in understanding nontrivial band topology and discovering exotic topological materials in condensed-matter physics. Recently, topological physics has been further extended to the chemistry discipline, leading to the emergence of topological catalysis. In principle, the topological effect is detectable in catalytic reactions, but no conclusive evidence has been reported yet. Herein, by precisely manipulating the topological surface state (TSS) of Bi2Se3 nanosheets through thickness control and the application of a magnetic field, we provide direct experimental evidence to illustrate topological catalysis for CO2 electroreduction. With and without the cooperation of TSS, CO2 is mainly reduced into liquid fuels (HCOOH and H2C2O4) and CO, exhibiting high (up to 90% at -1.1 V versus reversible hydrogen electrode) and low Faradaic efficiency (FE), respectively. Theoretically, the product and FE difference can be attributed to the TSS-regulated adsorption of key intermediates and the reduced barrier of the potential-determining step. Our work demonstrates the inherent correlation between band topology and electrocatalysis, paving a new avenue for designing high-performance catalysts.

4.
Nano Lett ; 24(5): 1801-1807, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277670

RESUMO

The electrooxidation of propylene presents a promising route for the production of 1,2-propylene glycol (PG) under ambient conditions. However, the C-O coupling process remains a challenge owing to the high energy barrier. In this work, we developed a highly efficient electrocatalyst of bipyridine-confined Ag single atoms on UiO-bpy substrates (Ag SAs/UiO-bpy), which exposed two in-plane coordination vacancies during reaction for the co-adsorption of key intermediates. Detailed structure and electronic property analyses demonstrate that CH3CHCH2OH* and *OH could stably co-adsorb in a square planar configuration, which then accelerates the charge transfer between them. The combination of stable co-adsorption and efficient charge transfer facilitates the C-O coupling process, thus significantly lowering its energy barrier. At 2.4 V versus a reversible hydrogen electrode, Ag SAs/UiO-bpy achieved a record-high activity of 61.9 gPG m-2 h-1. Our work not only presents a robust electrocatalyst but also advances a new perspective on catalyst design for propylene electrooxidation.

5.
Front Microbiol ; 14: 1274346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901825

RESUMO

The HSE-12 strain isolated from peanut rhizosphere soil was identified as Bacillus amyloliquefaciens by observation of phenotypic characteristics, physiological and biochemical tests, 16S rDNA and gyrB gene sequencing. In vitro experiments showed that the strain possessed biocontrol activity against a variety of pathogens including Sclerotium rolfsii. The strain has the ability to produce hydrolytic enzymes, as well as volatile organic compounds with antagonistic and probiotic effects such as ethyleneglycol and 2,3-butanediol. In addition, HSE-12 showed potassium solubilizing (10.54 ± 0.19 mg/L), phosphorus solubilization (168.34 ± 8.06 mg/L) and nitrogen fixation (17.35 ± 2.34 mg/g) abilities, and was able to secrete siderophores [(Ar-A)/Ar × 100%: 56%] which promoted plant growth. After inoculating peanut with HSE-12, the available phosphorus content in rhizosphere soil increased by 27%, urease activity increased by 43%, catalase activity increased by 70% and sucrase activity increased by 50% (p < 0.05). The dry weight, fresh weight and the height of the first pair of lateral branches of peanuts increased by 24.7, 41.9, and 36.4%, respectively, compared with uninoculated peanuts. In addition, compared with the blank control, it increased the diversity and richness of peanut rhizosphere bacteria and changed the community structure of bacteria and fungi. The relative abundance of beneficial microorganisms such as Sphingomonas, Arthrobacter, RB41, and Micromonospora in rhizosphere soil was increased, while the relative abundance of pathogenic microorganisms such as Aspergillus, Neocosmospora, and Rhizoctonia was decreased.

6.
J Am Chem Soc ; 145(27): 14903-14911, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37312284

RESUMO

The interfacial structure of heterogeneous catalysts determines the reaction rate by adjusting the adsorption behavior of reaction intermediates. Unfortunately, the catalytic performance of conventionally static active sites has always been limited by the adsorbate linear scaling relationship. Herein, we develop a triazole-modified Ag crystal (Ag crystal-triazole) with dynamic and reversible interfacial structures to break such a relationship for boosting the catalytic activity of CO2 electroreduction into CO. On the basis of surface science measurements and theoretical calculations, we demonstrated the dynamic transformation between adsorbed triazole and adsorbed triazolyl on the Ag(111) facet induced by metal-ligand conjugation. During CO2 electroreduction, Ag crystal-triazole with the dynamically reversible transformation of ligands exhibited a faradic efficiency for CO of 98% with a partial current density for CO as high as -802.5 mA cm-2. The dynamic metal-ligand coordination not only reduced the activation barriers of CO2 protonation but also switched the rate-determining step from CO2 protonation to the breakage of C-OH in the adsorbed COOH intermediate. This work provided an atomic-level insight into the interfacial engineering of the heterogeneous catalysts toward highly efficient CO2 electroreduction.

7.
ChemSusChem ; 16(22): e202300202, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971488

RESUMO

The electroreduction of nitrate (NO3 - ) to valuable ammonia (NH3 ) is a green and appealing alternative to the Haber-Bosch process. Nevertheless, this process suffers from low performance for NH3 due to the sluggish multi-electron/proton-involved steps. In this work, a CuPd nanoalloy catalyst was developed toward NO3 - electroreduction at ambient conditions. By modulating the atomic ratio of Cu to Pd, the hydrogenation steps of NH3 synthesis during NO3 - electroreduction can be effectively controlled. At -0.7 V versus reversible hydrogen electrode (vs. RHE), the optimized CuPd electrocatalysts achieved a Faradaic efficiency for NH3 of 95.5 %, which was 1.3 and 1.8 times higher than that of Cu and Pd, respectively. Notably, at -0.9 V vs. RHE, the CuPd electrocatalysts showed a high yield rate of 36.2 mg h-1 cm-2 for NH3 with a corresponding partial current density of -430.6 mA cm-2 . Mechanism investigation revealed the enhanced performance originated from the synergistic catalytic cooperation between Cu and Pd sites. The H-atoms adsorbed on the Pd sites prefer to transfer to adjacent nitrogen intermediates adsorbed on the Cu sites, thereby promoting the hydrogenation of intermediates and the formation of NH3 .

8.
J Am Chem Soc ; 145(16): 9104-9111, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36944146

RESUMO

For the electrooxidation of propylene into 1,2-propylene glycol (PG), the process involves two key steps of the generation of *OH and the transfer of *OH to the C═C bond in propylene. The strong *OH binding energy (EB(*OH)) favors the dissociation of H2O into *OH, whereas the transfer of *OH to propylene will be impeded. The scaling relationship of the EB(*OH) plays a key role in affecting the catalytic performance toward propylene electrooxidation. Herein, we adopt an immobilized Ag pyrazole molecular catalyst (denoted as AgPz) as the electrocatalyst. The pyrrolic N-H in AgPz could undergo deprotonation to form pyrrolic N (denoted as AgPz-Hvac), which can be protonated reversibly. During propylene electrooxidation, the strong EB(*OH) on AgPz favors the dissociation of H2O into *OH. Subsequently, the AgPz transforms into AgPz-Hvac that possesses weak EB(*OH), benefiting to the further combination of *OH and propylene. The dynamically reversible interconversion between AgPz and AgPz-Hvac accompanied by changeable EB(*OH) breaks the scaling relationship, thus greatly lowering the reaction barrier. At 2.0 V versus Ag/AgCl electrode, AgPz achieves a remarkable yield rate of 288.9 mmolPG gcat-1 h-1, which is more than one order of magnitude higher than the highest value ever reported.

9.
Nat Commun ; 14(1): 474, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710270

RESUMO

Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.

10.
Nano Lett ; 22(19): 8000-8007, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36083633

RESUMO

Mass transfer plays an important role in controlling the surface coverage of reactants and the kinetics of surface reactions, thus significantly adjusting the catalytic performance. Herein, we reported that H2O diffusion was modulated by controlling the thicknesses of the carbon black (CB) layer between the gas diffusion electrode (GDE) of Cu and the electrolyte. As a consequence, the product distribution over the GDE of Cu was effectively regulated during CO2 electroreduction. Interestingly, a volcano-type relationship between the thickness of the CB layer and the faradaic efficiency (FE) for multicarbon (C2+) products was observed over the GDE of Cu. Especially, when the applied total current density was set as 800 mA cm-2, the FE for the C2+ products over the GDE of Cu coated by a CB layer with a thickness of 6.6 µm reached 63.2%, which was 2.8 times higher than that (16.8%) over the GDE of Cu without a CB layer.

11.
Adv Mater ; 34(36): e2204306, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839314

RESUMO

The electroreduction of nitrate (NO3 - ) pollutants to ammonia (NH3 ) offers an alternative approach for both wastewater treatment and NH3 synthesis. Numerous electrocatalysts have been reported for the electroreduction of NO3 - to NH3 , but most of them demonstrate poor performance at ultralow NO3 - concentrations. In this study, a Cu-based catalyst for electroreduction of NO3 - at ultralow concentrations is developed by encapsulating Cu nanoparticles in a porous carbon framework (Cu@C). At -0.3 V vs reversible hydrogen electrode (RHE), Cu@C achieves Faradaic efficiency for NH3 of 72.0% with 1 × 10-3 m NO3 - , which is 3.6 times higher than that of Cu nanoparticles. Notably, at -0.9 V vs RHE, the yield rate of NH3 for Cu@C is 469.5 µg h-1 cm-2 , which is the highest value reported for electrocatalysts with 1 × 10-3 m NO3 - . An investigation of the mechanism reveals that NO3 - can be concentrated owing to the enrichment effect of the porous carbon framework in Cu@C, thereby facilitating the mass transfer of NO3 - for efficient electroreduction into NH3 at ultralow concentrations.

12.
J Am Chem Soc ; 144(21): 9271-9279, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35549330

RESUMO

The two-dimensional surface or one-dimensional interface of heterogeneous catalysts is essential to determine the adsorption strengths and configurations of the reaction intermediates for desired activities. Recently, the development of single-atom catalysts has enabled an atomic-level understanding of catalytic processes. However, it remains obscure whether the conventional concept and mechanism of one-dimensional interface are applicable to zero-dimensional single atoms. In this work, we arranged the locations of single atoms to explore their interfacial interactions for improved oxygen evolution. When iridium single atoms were confined into the lattice of CoOOH, efficient electron transfer between Ir and Co tuned the adsorption strength of oxygenated intermediates. In contrast, atomic iridium species anchored on the surface of CoOOH induced inappreciable modification in electronic structures, whereas steric interactions with key intermediates at its Ir-OH-Co interface played a primary role in reducing its energy barrier toward oxygen evolution.

13.
Nano Lett ; 22(9): 3801-3808, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467883

RESUMO

Cu-based tandem nanocrystals have been widely applied to produce multicarbon (C2+) products via enhancing CO intermediate (*CO) coverage toward CO2 electroreduction. Nevertheless, it remains ambiguous to understand the intrinsic correlation between *CO coverage and C-C coupling. Herein, we constructed a tandem catalyst via coupling CoPc with the gas diffusion electrode of Cu (GDE of Cu-CoPc). A faradaic efficiency for C2+ products of 82% was achieved over a GDE of Cu-CoPc at an applied current density of 480 mA cm-2 toward CO2 electroreduction, which was 1.8 times as high as that over the GDE of Cu. Based on in situ experiments and density functional theory calculations, we revealed that the high *CO coverage induced by CO-generating CoPc promoted the local enrichment of *CO with the top adsorption mode, thus reducing the energy barrier for the formation of OCCO intermediate. This work provides an in-depth understanding of the surface coverage-dependent mode-specific C-C coupling mechanism toward CO2 electroreduction.

14.
Nano Lett ; 22(6): 2554-2560, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157470

RESUMO

Tuning the local confinement of reaction intermediates is of pivotal significance to promote C-C coupling for enhancing the selectivity for multicarbon (C2+) products toward CO2 electroreduction. Herein, we have gained insights into the confinement effect of local CO concentration for enhanced C-C coupling over core-shell Ag@Cu catalysts by tuning the pore diameters within porous Cu shells. During CO2 electroreduction, the core-shell Ag@Cu catalysts with an average pore diameter of 4.9 nm within the Cu shells (Ag@Cu-p4.9) exhibited the highest Faradaic efficiency of 73.7% for C2+ products at 300 mA cm-2 among the three Ag@Cu catalysts. Finite-element-method simulations revealed that the pores with a diameter of 4.9 nm in Cu conspicuously enhanced the local CO concentration. On the basis of in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements, Ag@Cu-p4.9 exhibited the highest surface coverage of adsorbed CO intermediates with a linear adsorption configuration due to the confinement effect, thus facilitating C-C coupling.

15.
Nat Commun ; 13(1): 932, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177597

RESUMO

The electrooxidation of propylene into propylene oxide under ambient conditions represents an attractive approach toward propylene oxide. However, this process suffers from a low yield rate over reported electrocatalysts. In this work, we develop an efficient electrocatalyst of Ag3PO4 for the electrooxidation of propylene into propylene oxide. The Ag3PO4 cubes with (100) facets exhibit the highest yield rate of 5.3 gPO m-2 h-1 at 2.4 V versus reversible hydrogen electrode, which is 1.6 and 2.5 times higher than those over Ag3PO4 rhombic dodecahedra with (110) facets and tetrahedra with (111) facets, respectively. The theoretical calculations reveal that the largest polarization of propylene on Ag3PO4 (100) facets is beneficial to break the symmetric π bonding and facilitate the formation of C-O bond. Meanwhile, Ag3PO4(100) facets exhibit the lowest adsorption energies of *C3H6 and *OH, inducing the lowest energy barrier of the rate-determining step and thus accounting for the highest catalytic performance.

16.
ChemSusChem ; 15(1): e202102010, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714607

RESUMO

Electrochemical CO2 methanation powered by renewable electricity provides a promising approach to utilizing CO2 in the form of a high-energy-density, clean fuel. Cu nanoclusters have been predicted by theoretical calculations to improve methane selectivity. Direct electrochemical reduction of Cu-based metal-organic frameworks (MOFs) results in large-size Cu nanoparticles which favor multi-carbon products. This study concerns an electrochemical oxidation-reduction method to prepare Cu clusters from MOFs. The derived Cu clusters exhibit a faradaic efficiency of 51.2 % for CH4 with a partial current density of >150 mA cm-2 . High-resolution microscopy, in situ X-ray absorption spectroscopy, in situ Raman spectroscopy, and a range of ex situ spectroscopies indicate that the distinctive CH4 selectivity is due to the sub-nanometer size of the derived materials, as well as stabilization of the clusters by residual ligands of the pristine MOF. This work offers a new insight into steering product selectivity of Cu by an electrochemical processing method.

17.
Nano Lett ; 21(20): 8924-8932, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34410722

RESUMO

CO2 electroreduction powered by renewable electricity represents a promising method to enclose anthropogenic carbon cycle. Current catalysts display high selectivity toward the desired product only over a narrow potential window due primarily to unoptimized intermediate binding. Here, we report a functional ligand modification strategy in which palladium nanoparticles are encapsulated inside metal-organic frameworks with 2,2'-bipyridine organic linkers to tune intermediate binding and thus to sustain a highly selective CO2-to-CO conversion over widened potential window. The catalyst exhibits CO faradaic efficiency in excess of 80% over a potential window from -0.3 to -1.2 V and reaches the maxima of 98.2% at -0.8 V. Mechanistic studies show that the 2,2'-bipyridine on Pd surface reduces the binding strength of both *H and *CO, a too strong binding of which leads to competing formate production and CO poison, respectively, and thus enhances the selectivity and stability of CO product.


Assuntos
Dióxido de Carbono , Nanopartículas Metálicas , Catálise , Eletricidade , Paládio
18.
Nano Lett ; 21(18): 7789-7795, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460262

RESUMO

Surface functionalization with atoms serves as an important strategy to modulate the catalytic activities of low-dimensional nanomaterials. Herein, we developed a facile hydrogen incorporation strategy for improving the catalytic activities of SnS2 nanosheets toward CO2 electroreduction. Compared with SnS2 nanosheets, the hydrogen-incorporated SnS2 (denoted as H-SnS2) nanosheets exhibited high current density and Faradaic efficiency (FE) for formate. At -0.9 V vs RHE, H-SnS2 nanosheets displayed a maximum FE of 93% for carbonaceous product, which rivals the activities of most Sn-based catalysts in CO2 electroreduction. Mechanistic studies disclosed that the incorporation of surface hydrogen induced the electron injection into the structures of H-SnS2 nanosheets, which largely facilitates the process of CO2 activation. Density functional theory (DFT) calculations further revealed that hydrogen incorporation decreased the energy barrier for the formation of HCOO* intermediates, thus contributing to the CO2-to-formate conversion on H-SnS2 nanosheets.

19.
Chem Soc Rev ; 50(17): 9817-9844, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34308950

RESUMO

In electrocatalysis, doping regulation has been considered as an effective method to modulate the active sites of catalysts, providing a powerful means for creating a large variety of highly efficient catalysts for various reactions. Of particular interest, there has been growing research concerning the doping of two-dimensional transition-metal compounds (TMCs) to optimize their electrocatalytic performance. Despite the previous achievements, mechanistic insights of doping regulation in TMCs for electrocatalysis are still lacking. Herein, we provide a systematic overview of doping regulation in TMCs in terms of background, preparation, impacts on physicochemical properties, and typical applications including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, and N2 reduction reaction. Notably, we bridge the understanding between the doping regulation of catalysts and their catalytic activities via focusing on the physicochemical properties of catalysts from the aspects of vacancy concentrations, phase transformation, surface wettability, electrical conductivity, electronic band structure, local charge distribution, tunable adsorption strength, and multiple adsorption configurations. We also discuss the existing challenges and future perspectives in this promising field.

20.
Chem Commun (Camb) ; 57(12): 1502-1505, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33443266

RESUMO

Electroreduction of CO2 to HCOOH with high current densities and efficiencies remains a challenge. Herein, we developed a metallic Bi catalyst with abundant grain boundaries through the electrochemical transformation of BiPO4 nanorods to boost the catalytic performance of the electroreduction of CO2 to HCOOH. The phosphate-derived Bi catalyst (PD-Bi) achieved an FE of 91.9% for HCOOH at a high current density of -600.0 mA cm-2. Mechanistic study revealed that the abundant grain boundaries within PD-Bi promoted the adsorption of CO2 and stabilization of the CO2˙- intermediate, resulting in facilitated CO2 activation and thus enhanced catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...