Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 8(8): 897-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864172

RESUMO

Organic agriculture outperforms conventional agriculture across several sustainability metrics due, in part, to more widespread use of agroecological practices. However, increased entry of large-scale farms into the organic sector has prompted concerns about 'conventionalization' through input substitution, agroecosystem simplification and other changes. We examined this shift in organic agriculture by estimating the use of agroecological practices across farm size and comparing indicators of conventionalization. Results from our national survey of 542 organic fruit and vegetable farmers show that fewer agroecological practices were used on large farms, which also exhibited the greatest degree of conventionalization. Intercropping, insectary plantings and border plantings were at least 1.4 times more likely to be used on small (0.4-39 cropland ha) compared with large (≥405 cropland ha) farms, whereas reduced tillage was less likely and riparian buffers were more likely on small compared with medium (40-404 cropland ha) farms. Because decisions about management practices can drive environmental sustainability outcomes, policy should support small and medium farms that already use agroecological practices while encouraging increased use of agroecological practices on larger farms.


Assuntos
Agricultura , Agricultura Orgânica , Agricultura/métodos , Fazendeiros , Fazendas , Humanos , Estados Unidos
2.
Glob Chang Biol ; 25(3): 1152-1170, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604474

RESUMO

Interest in land application of organic amendments-such as biosolids, composts, and manures-is growing due to their potential to increase soil carbon and help mitigate climate change, as well as to support soil health and regenerative agriculture. While organic amendments are predominantly applied to croplands, their application is increasingly proposed on relatively arid rangelands that do not typically receive fertilizers or other inputs, creating unique concerns for outcomes such as native plant diversity and water quality. To maximize environmental benefits and minimize potential harms, we must understand how soil, water, and plant communities respond to particular amendments and site conditions. We conducted a global meta-analysis of 92 studies in which organic amendments had been added to arid, semiarid, or Mediterranean rangelands. We found that organic amendments, on average, provide some environmental benefits (increased soil carbon, soil water holding capacity, aboveground net primary productivity, and plant tissue nitrogen; decreased runoff quantity), as well as some environmental harms (increased concentrations of soil lead, runoff nitrate, and runoff phosphorus; increased soil CO2 emissions). Published data were inadequate to fully assess impacts to native plant communities. In our models, adding higher amounts of amendment benefitted four outcomes and harmed two outcomes, whereas adding amendments with higher nitrogen concentrations benefitted two outcomes and harmed four outcomes. This suggests that trade-offs among outcomes are inevitable; however, applying low-N amendments was consistent with both maximizing benefits and minimizing harms. Short study time frames (median 1-2 years), limited geographic scope, and, for some outcomes, few published studies limit longer-term inferences from these models. Nevertheless, they provide a starting point to develop site-specific amendment application strategies aimed toward realizing the potential of this practice to contribute to climate change mitigation while minimizing negative impacts on other environmental goals.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Carbono/análise , Carbono/metabolismo , Poluentes Ambientais/análise , Fertilizantes/análise , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/metabolismo , Plantas/metabolismo , Solo/química , Fatores de Tempo
3.
PLoS One ; 12(6): e0176367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614358

RESUMO

Over eight years we measured the effects of plant community composition, vegetation structure, and livestock grazing on occurrence of three grassland bird species-Western Meadowlark (Sturnella neglecta), Horned Lark (Eremophila alpestris), and Grasshopper Sparrow (Ammodramus savannarum)-at sites in central California during breeding season. In California's Mediterranean-type climatic region, coastal and inland grassland vegetation is dominated by exotic annual grasses with occasional patches of native bunchgrass and forbs. Livestock grazing, primarily with beef cattle, is the most widely used management tool. Compared with ungrazed plots, grazed plots had higher bare ground, native plant cover, and vertically heterogeneous vegetation. Grazed plots also had less plant litter and shorter vegetation. Higher native plant cover, which is predominantly composed of bunchgrasses in our study area, was associated with livestock grazing and north-facing aspects. Using an information theoretic approach, we found that all three bird species had positive associations with native plant abundance and neutral (Western Meadowlark, Grasshopper Sparrow) or positive (Horned Lark) association with livestock grazing. All species favored flatter areas. Horned Larks and Western Meadowlark occurred more often where there were patches of bare ground. Western Meadowlarks and Grasshopper Sparrows were most common on north-facing slopes, suggesting that these species may be at risk from projected climate change. These findings demonstrate that livestock grazing is compatible with or supports grassland bird conservation in Mediterranean-type grasslands, including areas with high levels of exotic annual grass invasion, in part because grazing supports the persistence of native plants and heterogeneity in vegetation structure. However, conservation of low-lying grasslands with high native species presence, and active management to increase the abundance of native plant species are also likely to be important for sustaining grassland birds long-term.


Assuntos
Gado/fisiologia , Plantas/classificação , Aves Canoras/fisiologia , Animais , Biodiversidade , California , Bovinos , Conservação dos Recursos Naturais , Pradaria , Herbivoria , Desenvolvimento Vegetal
4.
Proc Natl Acad Sci U S A ; 112(35): 11126-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26261343

RESUMO

In 2006, a deadly Escherichia coli O157:H7 outbreak in bagged spinach was traced to California's Central Coast region, where >70% of the salad vegetables sold in the United States are produced. Although no definitive cause for the outbreak could be determined, wildlife was implicated as a disease vector. Growers were subsequently pressured to minimize the intrusion of wildlife onto their farm fields by removing surrounding noncrop vegetation. How vegetation removal actually affects foodborne pathogens remains unknown, however. We combined a fine-scale land use map with three datasets comprising ∼250,000 enterohemorrhagic E. coli (EHEC), generic E. coli, and Salmonella tests in produce, irrigation water, and rodents to quantify whether seminatural vegetation surrounding farmland is associated with foodborne pathogen prevalence in California's Central Coast region. We found that EHEC in fresh produce increased by more than an order of magnitude from 2007 to 2013, despite extensive vegetation clearing at farm field margins. Furthermore, although EHEC prevalence in produce was highest on farms near areas suitable for livestock grazing, we found no evidence of increased EHEC, generic E. coli, or Salmonella near nongrazed, seminatural areas. Rather, pathogen prevalence increased the most on farms where noncrop vegetation was removed, calling into question reforms that promote vegetation removal to improve food safety. These results suggest a path forward for comanaging fresh produce farms for food safety and environmental quality, as federal food safety reforms spread across ∼4.5 M acres of US farmland.


Assuntos
Conservação dos Recursos Naturais , Microbiologia de Alimentos , Verduras/microbiologia , Escherichia coli/isolamento & purificação , Salmonella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA