Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7263, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945575

RESUMO

The Kondo effect, deriving from a local magnetic impurity mediating electron-electron interactions, constitutes a flourishing basis for understanding a large variety of intricate many-body problems. Its experimental implementation in tunable circuits has made possible important advances through well-controlled investigations. However, these have mostly concerned transport properties, whereas thermodynamic observations - notably the fundamental measurement of the spin of the Kondo impurity - remain elusive in test-bed circuits. Here, with a novel combination of a 'charge' Kondo circuit with a charge sensor, we directly observe the state of the impurity and its progressive screening. We establish the universal renormalization flow from a single free spin to a screened singlet, the associated reduction in the magnetization, and the relationship between scaling Kondo temperature and microscopic parameters. In our device, a Kondo pseudospin is realized by two degenerate charge states of a metallic island, which we measure with a non-invasive, capacitively coupled charge sensor. Such pseudospin probe of an engineered Kondo system opens the way to the thermodynamic investigation of many exotic quantum states, including the clear observation of Majorana zero modes through their fractional entropy.

3.
Phys Rev Lett ; 130(10): 106201, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962050

RESUMO

Squeezing of the quadratures of the electromagnetic field has been extensively studied in optics and microwaves. However, previous works focused on the generation of squeezed states in a low impedance (Z_{0}≈50 Ω) environment. We report here on the demonstration of the squeezing of bosonic edge magnetoplasmon modes in a quantum Hall conductor whose characteristic impedance is set by the quantum of resistance (R_{K}≈25 kΩ), offering the possibility of an enhanced coupling to low-dimensional quantum conductors. By applying a combination of dc and ac drives to a quantum point contact, we demonstrate squeezing and observe a noise reduction 18% below the vacuum fluctuations. This level of squeezing can be improved by using more complex conductors, such as ac driven quantum dots or mesoscopic capacitors.

4.
Nat Commun ; 14(1): 514, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720855

RESUMO

The scattering of exotic quasiparticles may follow different rules than electrons. In the fractional quantum Hall regime, a quantum point contact (QPC) provides a source of quasiparticles with field effect selectable charges and statistics, which can be scattered on an 'analyzer' QPC to investigate these rules. Remarkably, for incident quasiparticles dissimilar to those naturally transmitted across the analyzer, electrical conduction conserves neither the nature nor the number of the quasiparticles. In contrast with standard elastic scattering, theory predicts the emergence of a mechanism akin to the Andreev reflection at a normal-superconductor interface. Here, we observe the predicted Andreev-like reflection of an e/3 quasiparticle into a - 2e/3 hole accompanied by the transmission of an e quasielectron. Combining shot noise and cross-correlation measurements, we independently determine the charge of the different particles and ascertain the coincidence of quasielectron and fractional hole. The present work advances our understanding on the unconventional behavior of fractional quasiparticles, with implications toward the generation of novel quasi-particles/holes and non-local entanglements.

5.
Nat Commun ; 11(1): 2426, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415091

RESUMO

The one-dimensional, chiral edge channels of the quantum Hall effect are a promising platform in which to implement electron quantum optics experiments; however, Coulomb interactions between edge channels are a major source of decoherence and energy relaxation. It is therefore of large interest to understand the range and limitations of the simple quantum electron optics picture. Here we confirm experimentally for the first time the predicted relaxation and revival of electrons injected at finite energy into an edge channel. The observed decay of the injected electrons is reproduced theoretically within a Tomonaga-Luttinger liquid framework, including an important dissipation towards external degrees of freedom. This gives us a quantitative empirical understanding of the strength of the interaction and the dissipation.

6.
Science ; 368(6487): 173-177, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32273465

RESUMO

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall effect at filling factor ν = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional statistics, with a phase ϕ associated with the exchange of two particles equal to π/m However, despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive. We experimentally demonstrate Abelian fractional statistics at filling factor ν = ⅓ by measuring the current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their dependence on the anyon current impinging on the splitter and comparing with recent theoretical models, we extract ϕ = π/3, in agreement with predictions.

7.
Science ; 366(6470): 1243-1247, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806813

RESUMO

The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of electron teleportation across a metallic island. This effect originates from the low-temperature freezing of the island's charge Q which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such faithful quantum state imprinting is established between well-separated injection and emission locations and evidenced through two-path interferences in the integer quantum Hall regime. The additional quantum phase of 2πQ/e, where e is the electron charge, may allow for decoherence-free entanglement of propagating electrons, and notably of flying qubits.

8.
Nat Commun ; 10(1): 5638, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822660

RESUMO

When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons' partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments.

9.
Nat Commun ; 10(1): 3379, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358764

RESUMO

In quantum nanoelectronics, time-dependent electrical currents are built from few elementary excitations emitted with well-defined wavefunctions. However, despite the realization of sources generating quantized numbers of excitations, and despite the development of the theoretical framework of time-dependent quantum electronics, extracting electron and hole wavefunctions from electrical currents has so far remained out of reach, both at the theoretical and experimental levels. In this work, we demonstrate a quantum tomography protocol which extracts the generated electron and hole wavefunctions and their emission probabilities from any electrical current. It combines two-particle interferometry with signal processing. Using our technique, we extract the wavefunctions generated by trains of Lorentzian pulses carrying one or two electrons. By demonstrating the synthesis and complete characterization of electronic wavefunctions in conductors, this work offers perspectives for quantum information processing with electrical currents and for investigating basic quantum physics in many-body systems.

10.
Nat Commun ; 10(1): 2231, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092828

RESUMO

The original version of this Article contained an error in the author affiliations. Affiliation 3 incorrectly read "Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190, Saint-Aubin, France". This has now been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 10(1): 1708, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979891

RESUMO

Strongly correlated low-dimensional systems can host exotic elementary excitations carrying a fractional charge q and potentially obeying anyonic statistics. In the fractional quantum Hall effect, their fractional charge has been successfully determined owing to low frequency shot noise measurements. However, a universal method for sensing them unambiguously and unraveling their intricate dynamics was still lacking. Here, we demonstrate that this can be achieved by measuring the microwave photons emitted by such excitations when they are transferred through a potential barrier biased with a dc voltage Vdc. We observe that only photons at frequencies f below qVdc/h are emitted. This threshold provides a direct and unambiguous determination of the charge q, and a signature of exclusion statistics. Derived initially within the Luttinger model, this feature is also predicted by universal non-equilibrium fluctuation relations which agree fully with our measurements. Our work paves the way for further exploration of anyonic statistics using microwave measurements.

12.
Science ; 360(6395): 1315-1320, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29724906

RESUMO

Quantum phase transitions (QPTs) are ubiquitous in strongly correlated materials. However, the microscopic complexity of these systems impedes the quantitative understanding of QPTs. We observed and thoroughly analyzed the rich strongly correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. An unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly correlated phenomena.

13.
Nat Commun ; 7: 12908, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659941

RESUMO

Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques.

14.
Nature ; 536(7614): 58-62, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488797

RESUMO

In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

15.
Phys Rev Lett ; 116(13): 136801, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081995

RESUMO

The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

16.
Phys Rev Lett ; 116(10): 106801, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015501

RESUMO

We report on an absolute measurement of the electronic spin polarization of the ν=1 integer quantum Hall state. The spin polarization is extracted in the vicinity of ν=1 (including at exactly ν=1) via resistive NMR experiments performed at different magnetic fields (electron densities) and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around ν=1. Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.

17.
Nature ; 526(7572): 233-6, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450056

RESUMO

Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

18.
Nat Commun ; 5: 4290, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978440

RESUMO

Quantum point contacts exhibit mysterious conductance anomalies in addition to well-known conductance plateaus at multiples of 2e(2)/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position.

19.
Science ; 342(6158): 601-4, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24091707

RESUMO

Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

20.
Nat Commun ; 4: 1802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653214

RESUMO

In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...