Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 15(1): 14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685067

RESUMO

BACKGROUND: Cells with homologous recombination (HR) deficiency, most notably caused by mutations in the BRCA1 or BRCA2 genes, are sensitive to PARP inhibition. Microsatellite instability (MSI) accounts for 10-15% of colorectal cancer (CRC) and is hypothesized to lead to HR defects due to altered expression of Mre11, a protein required for double strand break (DSB) repair. Indeed, others have reported that PARP inhibition is efficacious in MSI CRC. METHODS: Here we examine the response to niraparib, a potent PARP-1/PARP-2 inhibitor currently under clinical evaluation, in MSI versus microsatellite stable (MSS) CRC cell lines in vitro and in vivo. We compiled a large panel of MSI and MSS CRC cell lines and evaluated the anti-proliferative activity of niraparib. In addition to testing single agent cytotoxic activity of niraparib, we also tested irinotecan (or SN-38, the active metabolite of irinotecan) activity alone and in combination with niraparib in vitro and in vivo. RESULTS: In contrast to earlier reports, MSI CRC cell lines were not more sensitive to niraparib than MSS CRC cell lines¸ suggesting that the MSI phenotype does not sensitize CRC cell lines to PARP inhibition. Moreover, even the most sensitive MSI cell lines had niraparib EC50s greater than 10 fold higher than BRCA-deficient cell lines. However, MSI lines were more sensitive to SN-38 than MSS lines, consistent with previous findings. We have also demonstrated that combination of niraparib and irinotecan was more efficacious than either agent alone in both MSI and MSS cell lines both in vitro and in vivo, and that niraparib potentiates the effect of irinotecan regardless of MSI status. CONCLUSIONS: Our results support the clinical evaluation of this combination in all CRC patients, regardless of MSI status.

2.
Cancer Cell ; 10(6): 459-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17157787

RESUMO

Oncogene-induced senescence functions to limit tumor development. However, a complete understanding of the signals that trigger this type of senescence is currently lacking. We found that mutations affecting NF1, Raf, and Ras induce a global negative feedback response that potently suppresses Ras and/or its effectors. Moreover, these signals promote senescence by inhibiting the Ras/PI3K pathway, which can impact the senescence machinery through HDM2 and FOXO. This negative feedback program is regulated in part by RasGEFs, Sprouty proteins, RasGAPs, and MKPs. Moreover, these signals function in vivo in benign human tumors. Thus, the ultimate response to the aberrant activation of the Ras pathway is a multifaceted negative feedback signaling network that terminates the oncogenic signal and participates in the senescence response.


Assuntos
Senescência Celular , Genes ras/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Retroalimentação , Genes da Neurofibromatose 1/fisiologia , Genes do Retinoblastoma/fisiologia , Genes p53/fisiologia , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Células-Tronco/patologia , Quinases raf/fisiologia
3.
Cancer Res ; 65(15): 6534-42, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16061632

RESUMO

Multicellular organisms rely on complex networks of signaling cascades for development, homeostasis, and responses to the environment. These networks involve diffusible signaling molecules, their receptors, and a variety of downstream effectors. Alterations in the expression or function of any one of these factors can contribute to disease, including cancer. Many viruses have been implicated in cancer, and some of these modulate cellular signal transduction cascades to carry out their life cycles. High-risk human papillomaviruses (HPVs), the causative agents of most cervical and anogenital cancers, encode three oncogenes. One of these, E5, has been postulated to transform cells in tissue culture by modulating growth factor receptors. In this study, we generate and characterize transgenic mice in which the E5 gene of the most common high-risk HPV, HPV16, is targeted to the basal layer of the stratified squamous epithelium. In these mice, E5 alters the growth and differentiation of stratified epithelia and induces epithelial tumors at a high frequency. Through the analysis of these mice, we show a requirement of the epidermal growth factor receptor for the hyperplastic properties of E5.


Assuntos
Transformação Celular Viral/genética , Receptores ErbB/fisiologia , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Neoplasias Cutâneas/virologia , Pele/patologia , Alelos , Animais , Diferenciação Celular/genética , DNA/biossíntese , Epiderme/patologia , Epiderme/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Hiperplasia/virologia , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas Virais/biossíntese , Regiões Promotoras Genéticas , Transdução de Sinais , Pele/virologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...